Abstract
This paper investigates the parameter estimation of Hammerstein–Wiener systems whose linear subsystems are observable state-space models. The particle swarm optimization (PSO) and gravitational search (GSA) algorithms are combined to derive a novel method for identifying the discussed systems. To improve the optimization ability, some improvements are employed, including adding the oscillating exponential decay inertia weight and fuzzy membership in PSO (OFPSO) and introducing the chaotic optimization mechanism to GSA (CGSA). Thus, the combination of OFPSO and CGSA (OFPSO-CGSA) method is proposed. Its principle is to utilize coordinated behaviors of the speed in the OFPSO algorithm and the acceleration in the CGSA algorithm to update the particle position. Moreover, the convergence analysis proves that the OFPSO-CGSA algorithm converges to the global solution with probability one. Two simulations of the Hammerstein–Wiener nonlinear systems with two-dimensional and three-dimensional linear state space subsystems verify that the algorithms are effective, and OFPSO-CGSA has the best performance considering the convergence speed and identification accuracy in the algorithm comparison.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00034-022-02268-0/MediaObjects/34_2022_2268_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00034-022-02268-0/MediaObjects/34_2022_2268_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00034-022-02268-0/MediaObjects/34_2022_2268_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00034-022-02268-0/MediaObjects/34_2022_2268_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00034-022-02268-0/MediaObjects/34_2022_2268_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00034-022-02268-0/MediaObjects/34_2022_2268_Fig6_HTML.png)
Similar content being viewed by others
Data Availability
This manuscript has no associated data.
References
C.J.Z. Aguilar, J.F. Gómez-Aguilar, V.M. Alvarado-Martínez, H.M. Romero-Ugalde, Fractional order neural networks for system identification. Chaos Solitons Fractals 130, 109444 (2020)
A. Atitallah, S. Bedoui, K. Abderrahim, Joint parameter and time-delay identification algorithm and its convergence analysis for Wiener time-delay systems. Circuits Syst. Signal Process. 39, 199–222 (2020)
J. Bai, Z. Mao, T. Pu, Recursive identification for multi-input–multi-output Hammerstein–Wiener system. Int. J. Control 92(6), 1457–1469 (2019)
A. Brouri, F.Z. Chaoui, F. Giri, Identification of Hammerstein–Wiener models with hysteresis front nonlinearities. Int. J. Control 95(12), 3353–3367 (2022)
A. Brouri, F. Giri, F. Ikhouane, F.Z. Chaoui, O. Amdouri, Identification of Hammerstein–Wiener systems with backlash input nonlinearity bordered by straight lines, in 19th IFAC World Congress (vol. 47, No. 3, 2014) August 24–29, pp. 475–480
A. Brouri, L. Kadi, S. Slassi, Frequency identification of Hammerstein–Wiener systems with backlash input nonlinearity. Int. J. Control Autom. Syst. 15, 2222–2232 (2017)
V. Cerone, V. Razza, D. Regruto, One-shot set-membership identification of generalized Hammerstein–Wiener systems. Automatica 118, 109028 (2020)
F. Ding, H. Chen, L. Xu, J. Dai, Q. Li, T. Hayat, A hierarchical least squares identification algorithm for Hammerstein nonlinear systems using the key term separation. J. Franklin Inst. 355(8), 3737–3752 (2018)
F. Ding, X. Liu, M. Liu, The recursive least squares identification algorithm for a class of wiener nonlinear systems. J. Franklin Inst. 353(7), 1518–1526 (2016)
F. Ding, X. Wang, Q. Chen, Y. Xiao, Recursive least squares parameter estimation for a class of output nonlinear systems based on the model decomposition. Circuits Syst. Signal Process. 35(9), 3323–3338 (2016)
F. Ding, X. Zhang, L. Xu, The innovation algorithms for multivariable state-space models. Int. J. Adapt. Control Signal Process. 33(11), 1601–1618 (2019)
M.M. Garcia, J.Y.R. Morales, G.O. Torres, S.A.R. Paredes, S.V. Reyes, F.D.J.S. Vázquez, A.F.P. Vidal, J.S.V. Martínez, R.P. Zúñiga, E.M.R. Vargas, Simulation and state feedback control of a pressure swing adsorption process to produce hydrogen. Mathematics 10(10), 1762 (2022)
R. García-Ródenas, L.J. Linares, J.A. López-Gómez, A memetic chaotic gravitational search algorithm for unconstrained global optimization problems. Appl. Soft Comput. 79, 14–29 (2019)
C. Giladi, A. Sintov, Manifold learning for efficient gravitational search algorithm. Inf. Sci. 517, 18–36 (2020)
F. Giri, A. Brouri, O. Amdouri, F.Z. Chaoui, Frequency identification of Hammerstein–Wiener systems with piecewise affine input nonlinearity, in 19th IFAC World Congress (vol. 47, No. 3, 2014) August 24–29, pp. 10030–10035
A. Gopal, M.M. Sultani, J.C. Bansal, On stability analysis of particle swarm optimization algorithm. Arab. J. Sci. Eng. 45, 2385–2394 (2020)
Y. Gu, J. Liu, X. Li, Y. Chou, Y. Ji, State space model identification of multirate processes with time-delay using the expectation maximization. J. Franklin Inst. 356(3), 1623–1639 (2019)
R. Guha, M. Ghosh, A. Chakrabarti, R. Sarkar, S. Mirjalili, Introducing clustering based population in binary gravitational search algorithm for feature selection. Appl. Soft Comput. 93, 106341 (2020)
M.A. Islam, Y. Gajpal, T.Y. ElMekkawy, Hybrid particle swarm optimization algorithm for solving the clustered vehicle routing problem. Appl. Soft Comput. 110, 107655 (2021)
S. Jiang, Y. Wang, Z. Ji, Convergence analysis and performance of an improved gravitational search algorithm. Appl. Soft Comput. 24, 363–384 (2014)
J. Jiang, X. Yang, X. Meng, K. Li, Enhance chaotic gravitational search algorithm (CGSA) by balance adjustment mechanism and sine randomness function for continuous optimization problems. Phys. A Stat. Mech. Appl. 537, 122621 (2020)
F. Li, L. Jia, Parameter estimation of Hammerstein–Wiener nonlinear system with noise using special test signals. Neurocomputing 344, 37–48 (2019)
J. Li, W. Zheng, J. Gu, L. Hua, A recursive identification algorithm for Wiener nonlinear systems with linear state-space subsystem. Circuits Syst. Signal Process. 37(6), 2374–2393 (2018)
J. Li, T. Zong, J. Gu, L. Hua, Parameter estimation of Wiener systems based on the particle swarm iteration and gradient search principle. Circuits Syst. Signal Process. 39, 3470–3495 (2020)
J. Li, T. Zong, G. Lu, Parameter identification of Hammerstein–Wiener nonlinear systems with unknown time delay based on the linear variable weight particle swarm optimization. ISA Trans. 120, 89–98 (2022)
Q. Liu, Y. Xiao, F. Ding, T. Hayat, Decomposition-based over-parameterization forgetting factor stochastic gradient algorithm for Hammerstein–Wiener nonlinear systems with non-uniform sampling. Int. J. Robust Nonlinear Control 31(12), 6007–6024 (2021)
M. Mansouri, H. Tolouei, M.A. Shoorehdeli, Identification of Hammerstein–Wiener ARMAX systems using Extended Kalman Filter, in Proceedings of the 2011 Chinese Control and Decision Conference, CCDC 2011 (2011), pp. 1110–1114
M. Moodi, M. Ghazvini, H. Moodi, A hybrid intelligent approach to detect android botnet using smart self-adaptive learning-based PSO-SVM. Knowl. Based Syst. 222, 106988 (2021)
J.Y.R. Morales, G.L. López, V.M.A. Martínez, F.D.J.S. Vázquez, J.A.B. Mendoza, M.M. García, Parametric study and control of a pressure swing adsorption process to separate the water–ethanol mixture under disturbances. Sep. Purif. Technol. 236, 116214 (2020)
J.Y.R. Morales, J.A.B. Mendoza, G.O. Torres, F.D.J.S. Vázquez, A.C. Rojas, A.F.P. Vidal, Fault-tolerant control implemented to Hammerstein–Wiener model: application to bio-ethanol dehydration. Fuel 308, 121836 (2022)
B. Pedretscher, B. Kaltenbacher, O. Pfeiler, Parameter identification and uncertainty quantification in stochastic state space models and its application to texture analysis. Appl. Numer. Math. 146, 38–54 (2019)
D. Pelusi, R. Mascella, L. Tallini, J. Nayak, B. Naik, Y. Deng, Improving exploration and exploitation via a hyperbolic gravitational search algorithm. Knowl. Based Syst. 193, 105404 (2020)
E.M. Rentería-Vargas, C.J.Z. Aguilar, J.Y.R. Morales, F.D.J.S. Vázquez, M. De-La-Torre, J.A. Cervantes, E.S. Bustos, M.C. Rodríguez, Neural network-based identification of a PSA process for production and purification of bioethanol. IEEE Access 10, 27771–27782 (2022)
D. Ritzberger, J. Höflinger, Z.P. Du, C. Hametner, S. Jakubek, Data-driven parameterization of polymer electrolyte membrane fuel cell models via simultaneous local linear structured state space identification. Int. J. Hydrog. Energy 46(21), 11878–11893 (2021)
F. Rodrigues, Y. Molina, C. Silva, Z. Ñaupari, Simultaneous tuning of the AVR and PSS parameters using particle swarm optimization with oscillating exponential decay. Int. J. Electr. Power Energy Syst. 133, 107215 (2021)
C. Steenkamp, A.P. Engelbrecht, A scalability study of the multi-guide particle swarm optimization algorithm to many-objectives. Swarm Evolut. Comput. 66, 100943 (2021)
F. Su, C.R. Duan, R.P. Wang, Analysis and improvement of GSA’s optimization process. Appl. Soft Comput. 107, 107367 (2021)
A. Wills, B. Ninness, Generalised Hammerstein–Wiener system estimation and a benchmark application. Control Eng. Pract. 20(11), 1097–1108 (2012)
A. Wills, T.B. Schön, L. Ljung, B. Ninness, Identification of Hammerstein–Wiener models. Automatica 49(1), 70–81 (2013)
C. Yang, J. Zhang, M. Tong, A Hybrid quantum-behaved particle swarm optimization algorithm for solving inverse scattering problems. IEEE Trans. Antennas Propag. 69(9), 5861–5869 (2021)
C. Yu, J. Chen, S. Li, M. Verhaegen, Identification of affinely parameterized state-space models with unknown inputs. Automatica 122, 109271 (2020)
F. Yu, Z.Z. Mao, P. Yuan, D.K. He, M.X. Jia, Recursive parameter estimation for Hammerstein–Wiener systems using modified EKF algorithm. ISA Trans. 70, 104–115 (2017)
F. Zhao, X. Zhou, X. Xie, K. Wang, Design of gradient magnetic field coil based on an improved particle swarm optimization algorithm for magnetocardiography systems. IEEE Trans. Instrum. Meas. 70, 9520428 (2021)
T. Zong, J. Li, G. Lu, Auxiliary model-based multi-innovation PSO identification for Wiener-Hammerstein systems with scarce measurements. Eng. Appl. Artif. Intell. 106, 104470 (2021)
L.R. Zou, Design of reactive power optimization control for electromechanical system based on fuzzy particle swarm optimization algorithm. Microprocess. Microsyst. 82, 103865 (2021)
C.J. Zúñiga-Aguilar, J.F. Gómez-Aguilar, H.M. Romero-Ugalde, H. Jahanshahi, F.E. Alsaadi, Fractal-fractional neuro-adaptive method for system identification. Eng. Comput. 38, 3085–3108 (2022)
Acknowledgements
This work was supported in part by the National Natural Science Foundation of China (61973176, 62073180), the Natural Science Research Program of Jiangsu Colleges and Universities (20KJA470002), the Qinglan Project of Jiangsu Province of China, and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX21_3083).
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zong, T., Li, J. & Lu, G. Identification of Hammerstein–Wiener Systems with State-Space Subsystems Based on the Improved PSO and GSA Algorithm. Circuits Syst Signal Process 42, 2755–2781 (2023). https://doi.org/10.1007/s00034-022-02268-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-022-02268-0