Skip to main content
Log in

Two-Dimensional Direction-of-Arrival Estimation in Acoustic Vector Sensor Array via Constrained Tensor Decomposition

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The canonical polyadic decomposition (CPD) of higher-order tensors, a.k.a. PARAFAC, has shown excellent performance in two-dimensional direction of arrival (DOA) estimation using the acoustic vector sensor array (AVSA). However, most existing studies pay little attention to the manifold matrix structure of the AVSA during the CPD and are designed for uncorrelated sources. This paper presents a constrained CPD-based algorithm for DOA estimation using a uniform linear AVSA, whose manifold matrix is highly structured. Specifically, the manifold matrix equals to the Khatri-Rao product of a Vandermonde matrix and a proportional column-norm matrix. We show that DOA estimation accuracy is further improved by incorporating the prior structured information. Besides, we also extend the Toeplitz decorrelation technique to the AVSA to handle possibly correlated sources. The algorithm does not require iteration or peak searching and thus is computationally effective. Numerical simulations verify the effectiveness and superior performance of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. R. Bro, PARAFAC. Tutorial and applications. Chemom. Intell. Lab. Sys. 38(2), 149–171 (1997). https://doi.org/10.1016/S0169-7439(97)00032-4

    Article  Google Scholar 

  2. R. Bro, N.D. Sidiropoulos, Least squares algorithms under unimodality and non-negativity constraints. Journal of Chemometrics 12(4), 223–247 (1998). https://doi.org/10.1002/(SICI)1099-128X(199807/08)12:4<223::AID-CEM511>3.0.CO;2-2

  3. R. Bro, N. Sidiropoulos, G. Giannakis, (1999) A fast least squares algorithm for separating trilinear mixtures. In: Proceedings of international workshop ICA and BSS, France, pp 289–294

  4. J. Cao, J. Liu, J. Wang et al., Acoustic vector sensor: reviews and future perspectives. IET Sig. Process. 11(1), 1–9 (2016). https://doi.org/10.1049/iet-spr.2016.0111

    Article  Google Scholar 

  5. H. Chen, X. Zhang, Two-dimensional DOA estimation of coherent sources for acoustic vector-sensor array using a single snapshot. Wirel. Pers. Commun. 72(1), 1–13 (2013). https://doi.org/10.1007/s11277-013-0997-z

    Article  Google Scholar 

  6. H. Chen, J. Zhao, Coherent signal-subspace processing of acoustic vector sensor array for DOA estimation of wideband sources. Sig. Process. 85(4), 837–847 (2005). https://doi.org/10.1016/j.sigpro.2004.07.030

    Article  MATH  Google Scholar 

  7. H. Chen, C.P. Hou, Q. Wang et al., Cumulants-based toeplitz matrices reconstruction method for 2-D coherent DOA estimation. IEEE Sens. J. 14(8), 2824–2832 (2014). https://doi.org/10.1109/JSEN.2014.2316798

    Article  Google Scholar 

  8. de M. Goulart JH, M. Boizard, R. Boyer, et al., Tensor CP decomposition with structured factor matrices: algorithms and performance. IEEE J. Select. Top. Sig. Process. 10(4), 757–769 (2006). https://doi.org/10.1109/JSTSP.2015.2509907

  9. F.M. Han, X.D. Zhang, An ESPRIT-like algorithm for coherent DOA estimation. IEEE Anten. Wirel. Propag. Lett. 4, 443–446 (2005). https://doi.org/10.1109/LAWP.2005.860194

    Article  Google Scholar 

  10. J. He, Z. Liu, Two-dimensional direction finding of acoustic sources by a vector sensor array using the propagator method. Sig. Process. 88(10), 2492–2499 (2008). https://doi.org/10.1016/j.sigpro.2008.04.010

    Article  MATH  Google Scholar 

  11. J. He, Z. Liu, Computationally efficient underwater acoustic 2-D source localization with arbitrarily spaced vector hydrophones at unknown locations using the propagator method. Multidimen. Sys. Sig. Process. 20(3), 285–296 (2009). https://doi.org/10.1007/s11045-008-0069-9

    Article  MATH  Google Scholar 

  12. J. He, Z. Liu, Efficient underwater two-dimensional coherent source localization with linear vector-hydrophone array. Sig. Process. 89(9), 1715–1722 (2009). https://doi.org/10.1016/j.sigpro.2009.03.008

    Article  MATH  Google Scholar 

  13. J. He, S. Jiang, J. Wang et al., Particle-velocity-field difference smoothing for coherent source localization in spatially nonuniform noise. IEEE J. Ocean. Eng. 35(1), 113–119 (2010). https://doi.org/10.1109/JOE.2009.2036554

    Article  Google Scholar 

  14. J. He, Z. Zhang, C. Gu et al., Cumulant-based 2-d direction estimation using an acoustic vector sensor array. IEEE Trans. Aerosp. Electr. Sys. 56(2), 956–971 (2020). https://doi.org/10.1109/TAES.2019.2921194

    Article  Google Scholar 

  15. T.G. Kolda, B.W. Bader, Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009). https://doi.org/10.1137/07070111X

    Article  MathSciNet  MATH  Google Scholar 

  16. J.B. Kruskal, Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebr. Applicat. 18(2), 95–138 (1977). https://doi.org/10.1016/0024-3795(77)90069-6

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Munier, G. Delisle, Spatial analysis using new properties of the cross-spectral matrix. IEEE Transactions on Signal Processing 39(3), 746–749 (1991). https://doi.org/10.1109/78.80863

    Article  Google Scholar 

  18. A. Nehorai, E. Paldi, Acoustic vector-sensor array processing. IEEE Trans. Sig. Process. 42(9), 2481–2491 (1994). https://doi.org/10.1109/78.317869

    Article  Google Scholar 

  19. P. Palanisamy, N. Kalyanasundaram, P.M. Swetha, Two-dimensional DOA estimation of coherent signals using acoustic vector sensor array. Sig. Process. 92(1), 19–28 (2012). https://doi.org/10.1016/j.sigpro.2011.05.021

    Article  Google Scholar 

  20. S. Pillai, Y. Lee, Coherent signal classification using symmetry considerations. IEEE Trans. Acoust., Speech, Sig. Process. 37(1), 135–138 (1989). https://doi.org/10.1109/29.17514

    Article  Google Scholar 

  21. R. Roy, T. Kailath, ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust., Speech, Sig. Process. 37(7), 984–995 (1989). https://doi.org/10.1109/29.32276

    Article  MATH  Google Scholar 

  22. N. Sidiropoulos, R. Bro, G. Giannakis, Parallel factor analysis in sensor array processing. IEEE Trans. Sig. Process. 48(8), 2377–2388 (2000). https://doi.org/10.1109/78.852018

    Article  Google Scholar 

  23. N.D. Sidiropoulos, L. De Lathauwer, X. Fu et al., Tensor decomposition for signal processing and machine learning. IEEE Trans. Sig. Process. 65(13), 3551–3582 (2017). https://doi.org/10.1109/TSP.2017.2690524

    Article  MathSciNet  MATH  Google Scholar 

  24. L. Sorber, M. Van Barel, L. De Lathauwer, Structured data fusion. IEEE J. Select. Top. Sig. Process. 9(4), 586–600 (2015). https://doi.org/10.1109/JSTSP.2015.2400415

    Article  Google Scholar 

  25. M. Sorensen, P. Comon, Tensor decompositions with banded matrix factors. Linear Algeb. Appl. 438(2), 919–941 (2013). https://doi.org/10.1016/j.laa.2011.10.044

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Sørensen, L. De Lathauwer, Blind signal separation via tensor decomposition with Vandermonde factor: canonical polyadic decomposition. IEEE Trans. Sig. Process. 61(22), 5507–5519 (2013). https://doi.org/10.1109/TSP.2013.2276416

    Article  MathSciNet  MATH  Google Scholar 

  27. B. Sun, C. Wu, J. Shi et al., Direction-of-arrival estimation under array sensor failures with ULA. IEEE Access 8, 26445–26456 (2020). https://doi.org/10.1109/ACCESS.2019.2959274

    Article  Google Scholar 

  28. J. Tao, W. Chang, W. Cui, Vector field smoothing for DOA estimation of coherent underwater acoustic signals in presence of a reflecting boundary. IEEE Sens. J. 7(8), 1152–1158 (2007). https://doi.org/10.1109/JSEN.2007.900963

    Article  Google Scholar 

  29. K. Wang, J. He, T. Shu et al., Two-dimensional direction finding of coherent signals with a linear array of vector hydrophones. Multidimen. Sys. Sig. Process. 28(1), 293–304 (2017). https://doi.org/10.1007/s11045-016-0399-y

    Article  MATH  Google Scholar 

  30. A. Weiss, Blind direction-of-arrival estimation in acoustic vector-sensor arrays via tensor decomposition and Kullback–Leibler divergence covariance fitting. IEEE Trans. Sig. Process. 69, 531–545 (2021). https://doi.org/10.1109/TSP.2020.3043814

    Article  MathSciNet  MATH  Google Scholar 

  31. K. Wong, M. Zoltowski, Closed-form underwater acoustic direction-finding with arbitrarily spaced vector hydrophones at unknown locations. IEEE J. Ocean. Eng. 22(3), 566–575 (1997). https://doi.org/10.1109/48.611148

    Article  Google Scholar 

  32. K. Wong, M. Zoltowski, Extended-aperture underwater acoustic multisource azimuth/elevation direction-finding using uniformly but sparsely spaced vector hydrophones. IEEE J. Ocean. Eng. 22(4), 659–672 (1997). https://doi.org/10.1109/48.650832

    Article  Google Scholar 

  33. Y. Wu, G. Li, Z. Hu et al., Unambiguous directions of arrival estimation of coherent sources using acoustic vector sensor linear arrays. IET Radar, Sonar Navigat. 9(3), 318–323 (2015). https://doi.org/10.1049/iet-rsn.2014.0191

    Article  Google Scholar 

  34. X. Yuan, Coherent source direction-finding using a sparsely-distributed acoustic vector-sensor array. IEEE Trans. Aerosp. Electr. Sys. 48(3), 2710–2715 (2012). https://doi.org/10.1109/TAES.2012.6237621

    Article  Google Scholar 

  35. D. Zha, T. Qiu, Underwater sources location in non-Gaussian impulsive noise environments. Dig. Sig. Process. 16(2), 149–163 (2006). https://doi.org/10.1016/j.dsp.2005.04.008

    Article  Google Scholar 

  36. X. Zhang, J. Li, H. Chen et al., Trilinear decomposition-based two-dimensional DOA estimation algorithm for arbitrarily spaced acoustic vector-sensor array subjected to unknown locations. Wirel. Pers. Commun. 67(4), 859–877 (2012). https://doi.org/10.1007/s11277-011-0415-3

    Article  Google Scholar 

  37. X. Zhang, R. Cao, M. Zhou, Noncircular-PARAFAC for 2D-DOA estimation of noncircular signals in arbitrarily spaced acoustic vector-sensor array subjected to unknown locations. EURASIP J. Adv. Sig. Process. (2013). https://doi.org/10.1186/1687-6180-2013-107

    Article  Google Scholar 

  38. C. Zhu, W.Q. Wang, H. Chen et al., Impaired sensor diagnosis, beamforming, and DOA estimation with difference co-array processing. IEEE Sens. J. 15(7), 3773–3780 (2015). https://doi.org/10.1109/JSEN.2015.2399510

    Article  Google Scholar 

Download references

Funding

This article was funded by National Natural Science Foundation of China under the Grant Nos. (12074315, 52231013, 61901383).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Duan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Proof of (16)

Proof

From the construction, one obtains

$$\begin{aligned} {\mathcal {R}}(:,:,i)= {{\textbf {A}}} \bar{{{\textbf {D}}}}_i {{\textbf {A}}}^H,\quad (i=1,2,3,4), \end{aligned}$$
(A.1)

where \(\bar{{{\textbf {D}}}}_i = \sum _{j=1}^4 {{\textbf {D}}}_{i,j}/4\). Let \({{\textbf {d}}}_i \in {\mathbb {C}}^{K\times 1}\) be the vector consisting of the diagonal elements of the diagonal matrix \(\bar{{{\textbf {D}}}}_i\), then \({{\textbf {d}}}_i(k) = \xi _k {{\textbf {B}}}(i,k)\) with \(\xi _k = \sigma _k^2 (1+u_k+v_k+w_k)/4\). Stacking the \({\mathcal {R}}(:,:,i)\) into a long vector gives

$$\begin{aligned} \text {vec}\{{\mathcal {R}}(:,:,i)\} = ({{\textbf {A}}}^*\odot {{\textbf {A}}}) {{\textbf {d}}}_i. \end{aligned}$$
(A.2)

Then, the mode-3 unfolding of \({\mathcal {R}}\) can be expressed by

$$\begin{aligned} {\textbf {R}}_{3}&=[\text {vec}\{{{\textbf {R}}}(:,:,1)\},\dots ,\text {vec}\{{{\textbf {R}}}(:,:,4)\}] \nonumber \\&= ({{\textbf {A}}}^*\odot {{\textbf {A}}}) [{{\textbf {d}}}_1, \dots , {{\textbf {d}}}_4] \nonumber \\&= ({{\textbf {A}}}^*\odot {{\textbf {A}}}) {\tilde{{\textbf {B}}}}^T. \end{aligned}$$
(A.3)

where \({\tilde{{\textbf {B}}}} = {{\textbf {B}}}\cdot \text {Diag}\{\xi _1,\dots ,\xi _K\}\). Comparing with (5), \({\mathcal {R}}\) can be denoted as \({\mathcal {R}}=[[{{\textbf {A}}}, {{\textbf {A}}}^*, {\tilde{{\textbf {B}}}}]]\). \(\square \)

Appendix B Proof of (25)

Proof

The (lm)-th element of \({{\textbf {R}}}_{i,j}\) can be expressed as

$$\begin{aligned} r_{l,m}&= E \left\{ \left( \sum _{k=1}^{K} {{\textbf {B}}}(i,k) z_k^{l} s_k[t] \right) \left( \sum _{k'=1}^{K} {{\textbf {B}}}(j,k') z_{k'}^{m} s_{k'}[t] \right) ^H \right\} \nonumber \\&= \sum _{k=1}^K {{\textbf {B}}}(i,k) \left( \sum _{k'=1}^{K} {{\textbf {B}}}(j,k') E\left\{ s_k[t]s_{k'}^*[t]\right\} z_{k'}^{-m} \right) z_k^l \nonumber \\&= \sum _{k=1}^K d_{i,j,m,k} z_k^l,\quad (l,m=-M,\dots ,0,\dots ,M), \end{aligned}$$
(B1)

where

$$\begin{aligned} \sigma _{k,k'}&= E\{s_k[t]s_{k'}^*[t]\}, \end{aligned}$$
(B2)
$$\begin{aligned} d_{i,j,m,k}&= {{\textbf {B}}}(i,k) \left( \sum _{k'=1}^{K} {{\textbf {B}}}(j,k') \sigma _{k,k'} z_{k'}^{-m} \right) . \end{aligned}$$
(B3)

From the construction of \({{\textbf {T}}}_{i,j,m}\) in (24), its \((l_1,l_2)\)-th element equals to \(r_{l_1-l_2,m}\) for \(l_1,l_2 = 1,\dots ,M+1\). Note that the first element of \({{\textbf {R}}}_{i,j}\) is indexed by \((-M,-M)\) while that of \({{\textbf {T}}}_{i,j,m}\) is indexed by (1, 1) for a formal convenience.

On the other hand, the \((l_1,l_2)\)-th entry of \({{\textbf {V}}} {{\textbf {D}}}_{i,j,m} {{\textbf {V}}}^H\) equals to

$$\begin{aligned} \sum _{k=1}^K d_{i,j,m,k}{{\textbf {v}}}_{k}(l_1) {{\textbf {v}}}_{k}^H(l_2)&= \sum _{k=1}^K d_{i,j,m,k}z_k^{l_1-1} z_{k}^{1-l_2} = r_{l_1-l_2,m}, \end{aligned}$$
(B4)

where \({{\textbf {v}}}_k = [1,z_k,\dots ,z_k^M]^T\) is the k-th column of \({{\textbf {V}}}\). Thus, (25) is proven. \(\square \)

Appendix C Proof of full column rank of \({\tilde{{\textbf {B}}}}\odot {{\textbf {A}}}\)

Proof

The Vandermonde matrix \({{\textbf {A}}} \in {\mathbb {C}}^{N\times K}\) is full column rank if \(K<N\) holds. To show \({\tilde{{\textbf {B}}}} \odot {{\textbf {A}}}\) is full column rank, a lemma is introduced as follows: \(\square \)

Lemma 1

[Full Rank of Khatri-Rao Product [22]] If \(k_{{{\textbf {W}}}}+k_{{{\textbf {Z}}}} \ge J+1\), then \({{\textbf {Z}}}\odot {{\textbf {W}}}\) is full column rank J, where \({{\textbf {W}}}\) is \(I_1\times J\) and \({{\textbf {Z}}}\) is \(I_2 \times J\).

Using Lemma 1 and the fact that \(k_{{\textbf {A}}} = \min (N,K)\) and \(k_{{\tilde{{\textbf {B}}}}}=\min (3,K)\), one obtains that \(k_{{\textbf {A}}} + k_{{\tilde{{\textbf {B}}}}} = \min (N,K) + \min (3,K)\). Therefore, \({\tilde{{\textbf {B}}}} \odot {{\textbf {A}}}\) is full column rank if \(1<K<N\) holds.

Appendix D Proof of the PCN constrained solution

Solving (38) seems to be challenging because of the non-positive definiteness of the PCN constraint. Fortunately, it can be solved by the following lemma.

Lemma 2

[Optimal Scaling Lemma [2]] For any column-wise constraint set \({\mathbb {S}}\) it holds that

$$\begin{aligned} \min _{{{\textbf {b}}} \in {\mathbb {S}}} \left\| {{\textbf {X}}} - {{\textbf {a}}}{{\textbf {b}}}^H \right\| _F^2 \Longleftrightarrow \min _{{{\textbf {b}}} \in {\mathbb {S}}} \left\| {{\textbf {b}}}^{LS} - {{\textbf {b}}} \right\| _2^2, \end{aligned}$$
(D.1)

where \({{{\textbf {b}}}}^{LS}= {{\textbf {X}}}^H{{\textbf {a}}}/\Vert {{\textbf {a}}}\Vert _2^2\). In other words, the optimal solution of the CLS problem is simply the projection of the (unconstrained) LS solution onto the constraint set \({\mathbb {S}}\).

With Lemma 2, the problem in (38) becomes

$$\begin{aligned} \min _{{{\textbf {b}}} \in {\mathbb {P}}^{4\times 1}} \left\| {\tilde{{\textbf {b}}}}_k^{LS} - {{\textbf {b}}} \right\| _2^2, \end{aligned}$$
(D.2)

where \({\tilde{{\textbf {b}}}}_k^{LS}= {\tilde{{\textbf {U}}}}_k^T {{\textbf {a}}}_k^* /\Vert {{\textbf {a}}}_k\Vert _2^2\) is the LS solution in (37). The next step is to project \({\tilde{{\textbf {b}}}}_k^{LS}\) onto the PCN space. Since \({{\textbf {b}}}\) is in the PCN space, it can be parameterized as

$$\begin{aligned} {{\textbf {b}}} = {\tilde{{\textbf {b}}}}_k^{LS}(1) \zeta [1,\cos \alpha \cos \beta ,\cos \alpha \sin \beta ,\sin \alpha ]^T, \end{aligned}$$
(D.3)

where \(\zeta \) is used to adjust the length of \({{\textbf {b}}}\) and \({\tilde{{\textbf {b}}}}_k^{LS}(1)\) is used to simplify the subsequent objective function. Defining

$$\begin{aligned} c_i \triangleq {\tilde{{\textbf {b}}}}_k^{LS}(i)/{\tilde{{\textbf {b}}}}_k^{LS}(1), \quad (i= 1,2,3,4), \end{aligned}$$
(D.4)

and substituting (D.3) and (D.4) into the objective function in (D.2), one obtains

$$\begin{aligned} \left\| {\tilde{{\textbf {b}}}}_k^{LS} - {{\textbf {b}}} \right\| _2^2= & {} \left[ {\tilde{{\textbf {b}}}}_k^{LS}(1)\right] ^2 \left[ (1-\zeta )^2 + (c_2-\zeta \cos \alpha \cos \beta )^2 + (c_3-\zeta \cos \alpha \sin \beta )^2 \nonumber \right. \\{} & {} \left. + (c_4-\zeta \sin \alpha )^2 \right] \nonumber \\= & {} \left[ {\tilde{{\textbf {b}}}}_k^{LS}(1)\right] ^2 \!\left[ - 2\zeta (c_1 \!+\! c_2\cos \alpha \cos \beta \!+\! c_3 \!\cos \alpha \sin \beta \!+\! c_4 \sin \alpha ) \!+\! 2\zeta ^2 \right] \nonumber \\{} & {} + \text {const}, \end{aligned}$$
(D.5)

where \( \text {const} = \left[ {\tilde{{\textbf {b}}}}_k^{LS}(1)\right] ^2 (1+c_2^2+c_3^2+c_4^2 ) = \left\| {\tilde{{\textbf {b}}}}_k^{LS}\right\| _2^2\). After dropping the constant values and the scale factor in (D.5), the CLS problem in (D.2) is equivalent to find \((\alpha ,\beta ,\zeta )\) that minimizes

$$\begin{aligned} f(\alpha ,\beta ,\zeta ) =&- 2\zeta (c_1 + c_2\cos \alpha \cos \beta + c_3 \cos \alpha \sin \beta + c_4 \sin \alpha ) + 2\zeta ^2. \end{aligned}$$
(D.6)

The minimal of \(f(\alpha ,\beta ,\zeta )\) is obtained when \({\partial f}/{\partial \zeta } = {\partial f}/{\partial \alpha } ={\partial f}/{\partial \beta } = 0\). Solving the value of \((\alpha , \beta , \zeta )\) and substituting them into (D.3), the optimal estimates of \({\tilde{{\textbf {b}}}}_k\) simplifies to

$$\begin{aligned} {\tilde{{\textbf {b}}}}_k^{CLS} = \frac{ (1+L){\tilde{{\textbf {b}}}}_k^{LS}(1)}{2} [1,c_2/L,c_3/L,c_4/L]^T, \end{aligned}$$
(D.7)

where \(L = \sqrt{c_2^2+c_3^2+c_4^2}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, D., Duan, R. & Yang, K. Two-Dimensional Direction-of-Arrival Estimation in Acoustic Vector Sensor Array via Constrained Tensor Decomposition. Circuits Syst Signal Process 42, 4197–4220 (2023). https://doi.org/10.1007/s00034-023-02310-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02310-9

Keywords

Navigation