Skip to main content
Log in

Design and Implementation of a Novel Circuit-Based Memristive Non-autonomous Hyperchaotic System with Conservative and Offset Boosting for Applications to Image Encryption

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The research on dissipative-chaotic systems has exhibited plenty of remarkable results for past few decades. But unfortunately, the attackers can quickly rebuild the attractors in dissipative systems, causing multiple information security issues. Compared to the dissipative system, the conservative system can efficiently prevent such external attacks due to the presence of flows without any attractors. Therefore, the study of conservative chaotic systems is essential for secure communications and engineering applications. Presently, a few studies are there for non-autonomous conservative systems based on simple memristor. For this reason, a circuit-based new simple memristor is designed and using this, a non-autonomous four-dimensional hyperchaotic conservative system without an equilibrium point is proposed in this paper. The hyperchaotic behavior and multiple offset boosting are explored by phase portraits, bifurcation diagrams, and Lyapunov exponent plots. It is found that due to the presence of applied stimuli, the proposed system also produces time-varying hyperchaos and offset boosting. Furthermore, different torus structures, triggered by initial conditions and control parameters are observed here as the prominent property of the conservative system. An analog circuit of the chaotic system is developed and executed experimentally to verify the correctness of the numerical model. Concurrently, a new algorithm for image encryption using the proposed hyperchaotic map is stated and the efficiency of this algorithm is confirmed by several security tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M.T. Abuelma’atti, Z.J. Khalifa, A new floating memristor emulator and its application in frequency-to-voltage conversion. Analog Integr. Circuits Signal Process. 86(1), 141–147 (2016)

    Article  Google Scholar 

  2. Y. Babacan, F. Kacar, K. Gürkan, A spiking and bursting neuron circuit based on memristor. Neurocomputing 203, 86–91 (2016)

    Article  Google Scholar 

  3. H. Bao, Y. Zhang, W. Liu, B. Bao, Memristor synapse-coupled memristive neuron network: synchronization transition and occurrence of chimera. Nonlinear Dyn. 100(1), 937–950 (2020)

    Article  MATH  Google Scholar 

  4. U. Cavusoglu, S. Panahi, A. Akgul, S. Jafari, S. Kacar, A new chaotic system with hidden attractor and its engineering applications: analog circuit realization and image encryption. Analog Integr. Circuits Signal Process. 98(1), 85–99 (2019)

    Article  Google Scholar 

  5. L. Chen, H. Yin, T. Huang, L. Yuan, S. Zheng, L. Yin, Chaos in fractional-order discrete neural networks with application to image encryption. Neural Netw. 125, 174–184 (2020)

    Article  Google Scholar 

  6. M. Chen, C. Wang, H. Wu, Q. Xu, B. Bao, A non-autonomous conservative system and its reconstitution in integral domain. Nonlinear Dyn. 103(1), 643–655 (2021)

    Article  Google Scholar 

  7. L. Chunbiao, J.C. Sprott, Y. Lu, Z. Gu, J. Zhang, Offset boosting for breeding conditional symmetry. Int. J. Bifurc. Chaos 6, 66 (2018)

    MATH  Google Scholar 

  8. L. Chunbiao, T. Lei, X. Wang, G. Chen, Dynamics editing based on offset boosting. Chaos 6, 66 (2020)

    MathSciNet  MATH  Google Scholar 

  9. L. Chunbiao, X. Wang, G. Chen, Diagnosing multistability by offset boosting. Nonlinear Dyn. 90, 1335–1341 (2017)

    Article  MathSciNet  Google Scholar 

  10. Y. Deng, Y. Li, A memristive conservative chaotic circuit consisting of a memristor and a capacitor. Chaos 30(1), 66 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Dharminder, U. Kumar, P. Gupta, A construction of a conformal Chebyshev chaotic map based authentication protocol for healthcare telemedicine services. Complex Intell. Syst. 7(5), 2531–2542 (2021)

    Article  Google Scholar 

  12. E. Dong, M. Yuan, S. Du, Z. Chen, A new class of Hamiltonian conservative chaotic systems with multistability and design of pseudo-random number generator. Appl. Math. Model. 73, 40–71 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Feki, An adaptive chaos synchronization scheme applied to secure communication. Chaos Solitons Fract. 18(1), 141–148 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Gokyildirim, Y. Uyaroglu, I. Pehlivan, A weak signal detection application based on hyperchaotic Lorenz system. Tehnicki Vjesnik. 25(3), 701–708 (2018)

    Google Scholar 

  15. S. Gu, S. He, H. Wang, B. Du, Analysis of three types of initial offset-boosting behavior for a new fractional-order dynamical system. Chaos Solitons Fract. 143, 110613 (2021)

    Article  Google Scholar 

  16. M.L. Heltberg, S. Krishna, M.H. Jensen, On chaotic dynamics in transcription factors and the associated effects in differential gene regulation. Nat. Commun. 10(1), 1–10 (2019)

    Article  Google Scholar 

  17. L. Huang, W. Yao, J. Xiang, Z. Zhang, Heterogeneous and homogenous multistabilities in a novel 4D memristor-based chaotic system with discrete bifurcation diagrams. Complexity 6, 66 (2020)

    MATH  Google Scholar 

  18. S. Jafari, J.C. Sprott, S. Dehghan, Categories of conservative flows. Int. J. Bifurc.Chaos 29(2), 1–16 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Y. Jiang, F. Yuan, Y. Li, A dual memristive Wien-bridge chaotic system with variable amplitude and frequency. Chaos 30, 66 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Kadir, A. Hamdulla, W.Q. Guo, Color image encryption using skew tent map and hyperchaotic system of 6th-order CNN. Optik 125(5), 1671–1675 (2014)

    Article  Google Scholar 

  21. İ Koyuncu, M. Tuna, İ Pehlivan, C.B. Fidan, M. Alçın, Design, FPGA implementation and statistical analysis of chaos-ring based dual entropy core true random number generator. Analog Integr. Circuits Signal Process. 102(2), 445–456 (2020)

    Article  Google Scholar 

  22. X. Li, C. Jiang, R. Xu, W. Yang, H.H. Wang, Y. Zou, Combining forecast of landslide displacement based on chaos theory. Arab. J. Geosci. 14(3), 1–10 (2021)

    Article  Google Scholar 

  23. C. Li, J.C. Sprott, Variable-boostable chaotic flows. Optik 127, 10389–10398 (2016)

    Article  Google Scholar 

  24. Y. Liao, A. Vikram, V. Galitski, Many-body level statistics of single-particle quantum chaos. Phys. Rev. Lett. 125(25), 250601 (2020)

    Article  MathSciNet  Google Scholar 

  25. J.R. Mboupda Pone, S. Çiçek, S. TakougangKingni, A. Tiedeu, M. Kom, Passive–active integrators chaotic oscillator with anti-parallel diodes: analysis and its chaos-based encryption application to protect electrocardiogram signals. Analog Integr. Circuits Signal Process. 103(1), 1–15 (2020)

    Article  Google Scholar 

  26. B. Muthuswamy, L.O. Chua, Simplest chaotic circuit. Int. J. Bifurc. Chaos 20(5), 1567–1580 (2010)

    Article  Google Scholar 

  27. C. Nirmal, B.S. Tej, N. Arjun, Secure image encryption using chaotic, hybrid chaotic and block cipher approach. J. Imaging 8(6), 167 (2022)

    Article  Google Scholar 

  28. B. Norouzi, S. Mirzakuchaki, An image encryption algorithm based on DNA sequence operations and cellular neural network. Multimedia Tools Appl. 76(11), 13681–13701 (2017)

    Article  Google Scholar 

  29. G. Qi, Modelings and mechanism analysis underlying both the 4D Euler equations and Hamiltonian conservative chaotic systems. Nonlinear Dyn. 95(3), 2063–2077 (2019)

    Article  MATH  Google Scholar 

  30. K. Rajagopal, A. Bayani, A.J.M. Khalaf, H. Namazi, S. Jafari, V.T. Pham, A no-equilibrium memristive system with four-wing hyperchaotic attractor. AEU Int. J. Electron. Commun. 95, 207–215 (2018)

    Article  Google Scholar 

  31. C. Ran, S. Zhang, X. Gao, A novel 3D image encryption based on the chaotic system and RNA crossover and mutation. Front. Phys. 6, 66 (2022)

    Google Scholar 

  32. R.K. Ranjan, N. Rani, R. Pal, S.K. Paul, G. Kanyal, Single CCTA based high frequency floating and grounded type of incremental/decremental memristor emulator and its application. Microelectron. J. 60, 119–128 (2017)

    Article  Google Scholar 

  33. M.E. Sahin, A.S. Demirkol, H. Guler, S.E. Hamamci, Design of a hyperchaotic memristive circuit based on wien bridge oscillator. Comput. Electr. Eng. 88, 106826 (2020)

    Article  Google Scholar 

  34. C. Sanchez-Lopez, J. Mendoza-Lopez, M.A. Carrasco-Aguilar, C. Muniz-Montero, A floating analog memristor emulator circuit. IEEE Trans. Circuits Syst. II Express Briefs 61(5), 309–313 (2014)

    Google Scholar 

  35. J.P. Singh, B.K. Roy, Five new 4-D autonomous conservative chaotic systems with various type of non-hyperbolic and lines of equilibria. Chaos Solitons Fract. 114, 81–91 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. J.C. Sprott, Some simple chaotic flows. Phys. Rev. E 50(2), 66 (1994)

    Article  MathSciNet  Google Scholar 

  37. S. Vaidyanathan, C. Volos, A conservative hyperchaotic hyperjerk system based on memristive device. Adv. Memr. Memr. Dev. Syst. 66, 393–423 (2017)

    Google Scholar 

  38. Z. Wang, G. Qi, Modeling and analysis of a three-terminal-memristor-based conservative chaotic system. Entropy 23(1), 1–17 (2021)

    Article  MathSciNet  Google Scholar 

  39. N. Wang, G. Zhang, H. Bao, Infinitely many coexisting conservative flows in a 4D conservative system inspired by LC circuit. Nonlinear Dyn. 99(4), 3197–3216 (2020)

    Article  Google Scholar 

  40. L. Wang, S. Jiang, M.-F. Ge, C. Hu, J. Hu, Finite-/fixed-time synchronization of memristor chaotic systems and image encryption application. IEEE Trans. Circuit Syst. I Regul. Pap. 66, 1–13 (2021)

    Google Scholar 

  41. X. Wang, X. Qin, C. Liu, Color image encryption algorithm based on customized globally coupled map lattices. Multimedia Tools Appl. 78(5), 6191–6209 (2019)

    Article  Google Scholar 

  42. M.H. Weik, Relaxation oscillator. Comput. Sci. Commun. Dictionary 61(10), 1461–1461 (2000)

    Google Scholar 

  43. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Determining Lyapunov exponents from a time series. Phys. D 16(3), 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  44. A. Wu, S. Cang, R. Zhang, Z. Wang, Z. Chen, Hyperchaos in a conservative system with nonhyperbolic fixed points. Complexity 6, 66 (2018)

    MATH  Google Scholar 

  45. Q. Wu, Q. Hong, X. Liu, X. Wang, Z. Zeng, Constructing multi-butterfly attractors based on Sprott C system via non-autonomous approaches. Chaos 29(4), 66 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. H.G. Wu, Y. Ye, B.C. Bao, M. Chen, Q. Xu, Memristor initial boosting behaviors in a two-memristor-based hyperchaotic system. Chaos Solitons Fract. 121, 178–185 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. G. Ye, X. Huang, An efficient symmetric image encryption algorithm based on an intertwining logistic map. Neurocomputing 251, 45–53 (2017)

    Article  Google Scholar 

  48. A. Yesil, Y. Babacan, F. Kacar, Design and experimental evolution of memristor with only one VDTA and one capacitor. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 38(6), 1123–1132 (2019)

    Article  Google Scholar 

  49. A. Yesil, Y. Babacan, F. Kacar, A new DDCC based memristor emulator circuit and its applications. Microelectron. J. 45(3), 282–287 (2014)

    Article  Google Scholar 

  50. Y. Zhang, Y. Tang, A plaintext-related image encryption algorithm based on chaos. Multimedia Tools Appl. 77(6), 6647–6669 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santanu Mandal.

Ethics declarations

Conflict of interest

The authors report that there is no competing interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pratyusha, N., Mandal, S. Design and Implementation of a Novel Circuit-Based Memristive Non-autonomous Hyperchaotic System with Conservative and Offset Boosting for Applications to Image Encryption. Circuits Syst Signal Process 42, 3812–3834 (2023). https://doi.org/10.1007/s00034-023-02322-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02322-5

Keywords

Navigation