Skip to main content
Log in

Rich Dynamical Behavior in a Simple Chaotic Oscillator Based on Sallen Key High-Pass Filter

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A chaotic oscillator has been designed based on a Sallen Key-type high-pass filter (HPF). The HPF has been converted to a chaotic oscillator using a parallel combination of a PN junction diode as a nonlinear element and an inductor as an energy storage element. The dynamics of the proposed system has been simulated numerically using fourth-order Runge–Kutta method. The circuit exhibits period-doubling route to chaos as well as period-adding route to chaos depending on the choice of system parameters. Striking features like antimonotonicity and coexistence of attractors are also observed. Bifurcation diagram, phase plane plots and spectrum of Lyapunov exponents have been employed to describe the chaotic behavior of the system. A hardware experiment has been carried out to verify the same in the laboratory using off-the-shelf components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

Abbreviations

C :

Capacitor

R 1, R 2, R a, R b :

Resistor

V 1, V 0 :

Voltage

k :

R1/2R2

ω 0 :

Frequency of oscillation

L :

Inductor

D :

General purpose diode

C D :

Diode parasitic transit capacitance

V CD :

Voltage across CD

I L :

Inductor current

I D :

Nonlinear diode current

R D :

Forward conductance resistance of the diode

V γ :

Forward voltage drop of the diode

ε :

C D /C

r :

R1/R2

b :

R12C/L

K D :

R 1 /R D

x, y, z, p :

Normalized state variables

a(p):

A piecewise linear function

References

  1. R. Balamurali, J. Kengne, R.G. Chengui, K. Rajagopal, Coupled van der Pol and Duffing oscillators: emergence of antimonotonicity and coexisting multiple self-excited and hidden oscillations. Eur. Phys. J. Plus 137, 789 (2022). https://doi.org/10.1140/epjp/s13360-022-03000-2

    Article  Google Scholar 

  2. T. Banerjee, B. Karmakar, B.C. Sarkar, Single amplifier biquad based autonomous electronic oscillators for chaos generation. Nonlinear Dyn. 62, 859–866 (2010)

    Article  MATH  Google Scholar 

  3. T. Banerjee, Single amplifier biquad based inductor-free Chua’s circuit. Nonlinear Dyn. 68(4), 565–573 (2012)

    Article  MathSciNet  Google Scholar 

  4. B.C. Bao, Q.D. Li, N. Wang, Q. Xu, Multistability in Chua’s circuit with two stable node-foci. Chaos Interdiscip. J. Nonlinear Sci. 26(4), 43–111 (2016). https://doi.org/10.1063/1.4946813

    Article  MathSciNet  Google Scholar 

  5. B.C. Bao, N. Wang, M. Chen, Q. Xu, J. Wang, Inductor-free simplified Chua’s circuit only using two-op-amps-based realization. Nonlinear Dyn. 84(2), 511–525 (2016). https://doi.org/10.1007/s11071-015-2503-5

    Article  MathSciNet  Google Scholar 

  6. M.S. Baptista, Cryptography with chaos. Phys. Lett. A 240, 50–54 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Bier, T.C. Bountis, Remerging Feigenbaum trees in dynamical systems. Phys. Lett. A 104, 239244 (1984)

    Article  MathSciNet  Google Scholar 

  8. F. Bizzarri, M. Storace, RC op-amp implementation of hysteresis chaotic oscillator. Electron. Lett. 37, 209–211 (2001)

    Article  Google Scholar 

  9. S.P. Dawson, C. Grebogi, J.A. Yorke, I. Kan, H. Koak, Antimonotonicity: inevitable reversals of period-doubling cascades. Phys. Lett. A 162, 249254 (1992)

    Article  MathSciNet  Google Scholar 

  10. S.S. Desarkar, S. Chakraborty, Nonlinear dynamics of a class of derivative controlled Chua’s circuit. Int. J. Dyn. Control 6, 827834 (2018)

    MathSciNet  Google Scholar 

  11. S.S. Desarkar, A.K. Sharma, S. Chakraborty, Chaos, antimonotonicity and coexisting attractors in Van der Pol oscillator based electronic circuit. Analog Integr. Circ. Sig. Process 10, 211–229 (2021). https://doi.org/10.1007/s10470-021-01934-8

    Article  Google Scholar 

  12. V. Djordjevic, V. Stojanovic, H. Tao, X. Song, S. He, W. Gao, Data-driven control of hydraulic servo actuator based on adaptive dynamic programming. Discrete Continu. Dyn. Syst.-S 15(7), 1633–1650 (2022). https://doi.org/10.3934/dcdss.2021145

    Article  MathSciNet  MATH  Google Scholar 

  13. A.S. Dmitriev, A.I. Panas, S.O. Starkov, Experiments on speech and music signals transmission using chaos. Int. J. Bifurc. Chaos 5(4), 1249–1254 (1995)

    Article  MATH  Google Scholar 

  14. A.S. Elwakil, A.M. Soliman, High-frequency Wien-type chaotic oscillator. Electron. Lett. 34, 1161–1162 (1998)

    Article  Google Scholar 

  15. A.S. Elwakil, M.P. Kennedy, Systematic realization of a class of hysteresis chaotic oscillators. Int. J. Circuit Theory Appl. 28, 319–334 (2000)

    Article  MATH  Google Scholar 

  16. A.S. Elwakil, M.P. Kennedy, A low-voltage, low-power, chaotic oscillator, derived from a relaxation oscillator. Microelectron. J. 31, 459–468 (2000)

    Article  Google Scholar 

  17. A.S. Elwakil, M.P. Kennedy, A semi-systematic procedure for producing chaos from sinusoidal oscillators using diode-inductor and FET-capacitor composites. IEEE Trans. Circuits Syst.-I I(47), 582–590 (2000)

    Article  Google Scholar 

  18. A.S. Elwakil, M.P. Kennedy, Novel chaotic oscillator configuration using a diode-inductor composite. Int. J. Electron. 87, 397–406 (2000)

    Article  Google Scholar 

  19. A.S. Elwakil, M.P. Kennedy, Construction of classes of circuit-independent chaotic oscillators using passive-only nonlinear devices. IEEE Trans. Circuits Syst.-I Fundam. Theory Appl. 48(3), 66 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. A.E. Elwakil, M.P. Kennedy, Design methodology for autonomous chaotic oscillators. Chaos Circuits Syst. World Sci. Ser. Nonlinear Sci. Ser. B 11, 23–49 (2002)

    Google Scholar 

  21. Y. Fei, L. Lixiang, T. Qiang, C. Shuo, S. Yun, X. Quan, A survey on true random number generators based on chaos. Discrete Dyn. Nat. Soc. 2019, Article ID 2545123 (2019). https://doi.org/10.1155/2019/2545123

  22. Y. Hosokawa, Y. Nishio, A. Ushida, A design method of chaotic circuits using an oscillator and a resonator, in Proceedings of The 2001 IEEE International Symposium on Circuits and Systems, ISCAS 2001 (Cat. No.01CH37196) vol. 2, 373–376 (2001)

  23. Y. Hosokawa, Y. Nishio, A design method for chaotic circuits using two oscillators. World Sci. Ser. Nonlinear Sci. Ser. B Chaos Circuits Syst. (2002). https://doi.org/10.1142/9789812705303_0003

  24. J. Kengne, S. Jafari, Z.T. Njitacke, M.Y.A. Khanian, A. Cheukem, Dynamic analysis and electronic circuit implementation of a novel 3d autonomous system without linear terms. Commun. Nonlinear Sci. Numer. Simul. 52, 62–76 (2017)

    Article  Google Scholar 

  25. J. Kengne, A.N. Negou, Z.T. Njitacke, Antimonotonicity, chaos and multiple attractors in a novel autonomous jerk circuit. Int. J. Bifurc. Chaos 27, 1750100 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Kengne, N. Tsafack, L.K. Kengne, Dynamical analysis of a novel single Opamp-based autonomous LC oscillator: antimonotonicity, chaos, and multiple attractors. Int. J. Dyn. Control 6, 1543–1557 (2018). https://doi.org/10.1007/s40435-018-0414-2

    Article  MathSciNet  Google Scholar 

  27. L.K. Kengne, J.R.M. Pone, H.B. Fotsin, On the dynamics of chaotic circuits based on memristive diode-bridge with variable symmetry: a case study. Chaos Solitons Fract. 145(C), 110795 (2021)

    Article  MathSciNet  Google Scholar 

  28. M.P. Kennedy, Chaos in the Colpitts oscillator. IEEE Trans. Circuits Syst.-I Fundam. Theory Appl. 41, 771–774 (1994)

    Article  Google Scholar 

  29. T. Kilias, K. Kellber, A. Mogel, W. Schwarz, Electronic chaos generators-design and applications. Int. J. Elerctron. 79, 737 (1995)

    Article  Google Scholar 

  30. P.D.K. Kuate, N.H. Alombah, H. Fotsin, Emergence of complex dynamic behaviours in the Chua’s circuit with a nonlinear inductor. Int. J. Appl. Nonlinear Sci. 3(2), 156–178 (2021)

    Article  MathSciNet  Google Scholar 

  31. Q. Lai, P.D.K. Kuate, F. Liu, H.H.C. Iu, An extremely simple chaotic system with infinitely many coexisting attractors. IEEE Trans. Circuits Syst. II Express Briefs 67, 1129–1133 (2019)

    Google Scholar 

  32. C. Li, C. Sprott, A. Akgul, H.H.C. Iu, Y. Zhao, A new chaotic oscillator with free control. Chaos Interdiscip. J. Nonlinear Sci. 27(8), 1–6 (2017). https://doi.org/10.1063/1.4997051

    Article  MathSciNet  MATH  Google Scholar 

  33. C.B. Li, J.C. Sprott, W. Hu, Y.J. Xu, Infinite multistability in a self-reproducing chaotic system. Int. J. Bifurc. Chaos 27, 1750160 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. W. Liu, G. Chen, A new chaotic system and its generation. Int. J. Bifurc. Chaos 13, 261–267 (2003)

    Article  MATH  Google Scholar 

  35. X. Liu, J. Mou, J. Wang, J. Liu, Y. Cao, A new simple chaotic circuit based on memristor and meminductor. Eur. Phys. J. Plus. 136, Article number: 1182 (2021)

  36. J. Lü, G. Chen, Generating multiscroll chaotic attractors: theories methods and applications. Int. J. Bifurc. Chaos 16(4), 775–858 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. X. Ma, J. Mou, J. Liu, C. Ma, F. Yang, X. Zhao, A novel simple chaotic circuit based on memristor–memcapacitor. Nonlinear Dyn. 100(3), 2859–2876 (2020)

    Article  Google Scholar 

  38. B. Muthuswamy, L.O. Chua, Simplest chaotic circuit. Int. J. Bifurc. Chaos 20(5), 1507–1580 (2010)

    Google Scholar 

  39. A. Namajunas, A. Tamaseviciu, Modified Wien-bridge oscillator for chaos. Electron. Lett. 31, 335–336 (1995)

    Article  Google Scholar 

  40. L.P.N. Nguenjou, G.H. Kom, S.T. Kingni, G. Tchuen, A.B. Tiedeu, Multistability, antimonotonicity and experimental verification in a 3D SC-CNN Chua’s circuit with a smooth nonlinearity. Trans. Indian Natl. Acad. Eng. (2022). https://doi.org/10.1007/s41403-022-00351-1

    Article  Google Scholar 

  41. M.J. Ogorzalek, Chaos and complexity in nonlinear electronic circuits. World Sci. Ser. Nonlinear Sci. Ser. A 22, 66 (1997)

    MathSciNet  MATH  Google Scholar 

  42. L.M. Pecora, Overview of chaos and communications research. SPIE Proc. Chaos Commun. 2038, 2–25 (1993)

    Article  Google Scholar 

  43. L. Pei, F. Guo, S. Wu, L. Chua, Experimental confirmation of the period-adding route to chaos in a nonlinear circuit. IEEE Trans. Circuits Syst. 33(4), 438–442 (1986). https://doi.org/10.1109/TCS.1986.1085918

    Article  MathSciNet  Google Scholar 

  44. J.R. Piper, J.C. Sprott, Simple autonomous chaotic circuits. IEEE Trans Circuits Syst. II Exp. Briefs 57, 730–734 (2010)

    Google Scholar 

  45. J.S. Ramos, Introduction to nonlinear dynamics of electronic systems: tutorial. Nonlinear Dyn. 44, 3–14 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. T. Saito, A chaotic circuit family including one diode. Electron. Commun. Jpn. Part III Fundam. Electron. Sci. 72(8), 52–59 (1989)

    Article  MathSciNet  Google Scholar 

  47. B.C. Sarkar, S. Chakraborty, Self-oscillations of a third order PLL in periodic and chaotic mode and its tracking in a slave PLL. Commun. Nonlinear Sci. Numer. Simul. 19, 738–749 (2014)

    Article  MATH  Google Scholar 

  48. S.G. Stavrinides, A.N. Miliou, T. Laopoulos, A.N. Anagnostopoulos, The intermittency route to chaos of an electronic digital oscillator. Int. J. Bifurc. Chaos 18, 1561–1566 (2008)

    Article  MATH  Google Scholar 

  49. V. Stojanovic, N. Nedic, Joint state and parameter robust estimation of stochastic nonlinear systems. Int. J. Robust Nonlinear Control 26(14), 3058–3074 (2015). https://doi.org/10.1002/rnc.3490

    Article  MathSciNet  MATH  Google Scholar 

  50. K. Thamilmaran, M. Lakshmanan, Classification of bifurcations and Routes to Chaos in a Variant of Murali–lakshmanan–Chua circuit. Int. J. Bifurc. Chaos 12, 783–813 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  51. Z.H. Zhuang, H.F. Tao, Y.Y. Chen, V. Stojanovic, W. Paszke, Iterative learning control for repetitive tasks with randomly varying trial lengths using successive projection. Int. J. Adapt. Control Signal Process. 36(5), 1196–1215 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This works involves no outside funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saumendra Sankar De Sarkar.

Ethics declarations

Conflict of interest

Both the authors contributed equally. There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, S., De Sarkar, S.S. Rich Dynamical Behavior in a Simple Chaotic Oscillator Based on Sallen Key High-Pass Filter. Circuits Syst Signal Process 42, 3835–3853 (2023). https://doi.org/10.1007/s00034-023-02325-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02325-2

Keywords

Navigation