Skip to main content
Log in

A Sparse Reconstruction Algorithm Based on Constrained Inhomogeneous Grid Optimization

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The dictionary grid mismatch problem in sparse processing is an important factor affecting parameter reconstruction. The existing grid correction algorithms are limited by the initial grid division and the accurate estimation of the support set vector. Furthermore, these methods fail if multiple scattering points fall into the same grid interval. In this paper, a constrained inhomogeneous grid optimization sparse processing algorithm is proposed. The proposed method includes two sub-processes, namely initial grid optimization and the support set vector correction. The optimization of the initial grid is to use the idea of the coordinate descent method to iteratively generate an updated grid vector, which is used for the inhomogeneous fission of the grid around the target from coarse to dense. Moreover, under the constraint of dictionary atom maximum correlation, multiple scattering points are separated in different grids, which improves the search accuracy of support set atoms. The correction process of the support set vector is to use the first-order Taylor expansion of the dictionary grid to linearly approximate the real parameters of the target, to achieve adaptive correction of dictionary mismatched atoms. According to the simulation experiment of the frequency agile radar scenario, the proposed algorithm can achieve higher range-Doppler parameter joint estimation accuracy in the multi-scattering point scenario in comparison with the conventional sparse recovery algorithm and grid point correction algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Abtahi, S. Gazor, F. Marvasti, Off-grid localization in MIMO radars using sparsity. IEEE Signal Process. Lett. 25(2), 313–317 (2018)

    Article  Google Scholar 

  2. T.J. Abatzoglou, J.M. Mendel, G.A. Harada, The constrained total least squares technique and its applications to harmonic superresolution. IEEE Trans. Signal Process. 39(5), 1070–1087 (1991)

    Article  MATH  Google Scholar 

  3. S.F. Cotter, B.D. Rao, K. Engan, K. Kreutz-Delgado, Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans. Signal Process. 53(7), 2477–2488 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Carlin, P. Rocca, G. Oliveri, F. Viani, A. Massa, Directions-ofarrival estimation through Bayesian compressive sensing strategies. IEEE Trans. Antennas Propag. 61(7), 3828–3838 (2013)

    Article  MATH  Google Scholar 

  5. Y. Chi, L.L. Scharf, A. Pezeshki, A.R. Calderbank, Sensitivity to basis mismatch in compressed sensing. IEEE Trans. Signal Process. 59(5), 2182–2195 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. E.J. Candès, The restricted isometry property and its implications for compressed sensing. Comp. Rendus Math. 346(9–10), 589–592 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. J. A. Cadzow, D. M. Wilkes, Constrained total least squares: signal and system modeling, in 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing (1992), pp. 277–280

  8. J. Deng, H. Bi, J. Zhang, Z. Liu, L. Yu, Amplitude-phase CNN-based SAR target classification via complex-valued sparse image. IEEE J Sel. Top. Appl. Earth Observ. Remote Sens. 15, 5214–5221 (2022)

    Article  Google Scholar 

  9. S. Daei, F. Haddadi, A. Amini, Distribution-aware block-sparse recovery via convex optimization. IEEE Signal Process. Lett. 26(4), 528–532 (2019)

    Article  Google Scholar 

  10. P.J. Durka, D. Ircha, K.J. Blinowska, Stochastic time-frequency dictionaries for matching pursuit. IEEE Trans. Signal Process. 49(3), 507–510 (2001)

    Article  Google Scholar 

  11. A. Das, Real-valued sparse Bayesian learning for off-grid direction-of-arrival (DOA) estimation in ocean acoustics. IEEE J. Oceanic Eng. 46(1), 172–182 (2021)

    Article  MathSciNet  Google Scholar 

  12. K. Fyhn, H. Dadkhahi, M. F. Duarte, Spectral compressive sensing with polar interpolation, in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (2013), pp. 6225–6229

  13. S. Foucart, H. Rauhut, A Mathematical Introduction to Compressive Sensing (Springer, Berlin, 2013)

    Book  MATH  Google Scholar 

  14. I.F. Gorodnitsky, B.D. Rao, Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 45(3), 600–616 (1997)

    Article  Google Scholar 

  15. T. Huang, Y. Liu, H. Meng, X. Wang, Cognitive random stepped frequency radar with sparse recovery. IEEE Trans. Aero. Electron. Syst. 50(2), 858–870 (2014)

    Article  Google Scholar 

  16. T. Huang, Y. Liu, X. Xu, Y.C. Eldar, X. Wang, Analysis of frequency agile radar via compressed sensing. IEEE Trans. Signal Process. 66(23), 6228–6240 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Hu, Z. Shi, J. Zhou, Q. Fu, Compressed sensing of complex sinusoids: an approach based on dictionary refinement. IEEE Trans. Signal Process. 60(7), 3809–3822 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Huang, Adaptive matching pursuit with constrained total least squares. EURASIP J. Adv. Signal Process. 76 (2012)

  19. P. Huang, S. Dong, X, Liu, A coherent integration method for moving target detection using frequency agile radar. IEEE Geosci. Remote Sens. Letters. 16(2), 206–210 (2019)

    Article  MathSciNet  Google Scholar 

  20. T. Huang, N. Shlezinger, X. Xu, D. Ma, Y. Liu, Y.C. Eldar, Multi-carrier agile phased array radar. IEEE Trans. Signal Process. 68, 5706–5721 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Khanna, C.R. Murthy, Communication-efficient decentralized sparse bayesian learning of joint sparse signals. IEEE Trans. Signal Inf. Process. Netw. 3(3), 617–630 (2017)

    MathSciNet  Google Scholar 

  22. Y. Li, T. Huang, X. Xu, Y. Liu, L. Wang, Y.C. Eldar, Phase transitions in frequency agile radar using compressed sensing. IEEE Trans. Signal Process. 69, 4801–4818 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Y. Li, Y. Chi, Off-the-grid line spectrum denoising and estimation with multiple measurement vectors. IEEE Trans. Signal Process. 64(5), 1257–1269 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Y. Li, T. Huang, X. Xu, Phase transitions in frequency agile radar using compressed sensing. IEEE Trans. Signal Process 69, 4801–4818 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Liu, Y. Cao, T.S. Yeo, W. Wu, Y. Liu, Adaptive clutter suppression in randomized stepped-frequency radar. IEEE Trans. Aero. Electro. Syst. 57(2), 1317–1333 (2021)

    Article  Google Scholar 

  26. M. Rani, A systematic review of compressive sensing: concepts, implementations and applications. IEEE Access. 6, 4875–4894 (2018)

    Article  Google Scholar 

  27. S. Srivastava, A. Mishra, A. Rajoriya, A.K. Jagannatham, G. Ascheid, Quasi-static and time-selective channel estimation for block-sparse millimeter wave hybrid MIMO systems: sparse Bayesian learning (SBL) based approaches. IEEE Trans. Signal Process. 67(5), 1251–1266 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. P. Stoica, G. Tangy, Z. Yang, D. Zachariah, Gridless compressive-sensing methods for frequency estimation: points of tangency and links to basics,in 2014 22nd European Signal Processing Conference (EUSIPCO) (2014), pp. 1831–1835

  29. B. Sun, Multiple target counting and localization using variational Bayesian EM algorithm in wireless sensor networks. IEEE Trans. Commun. 65(7), 2985–2998 (2017)

    Article  Google Scholar 

  30. B. Sun, An efficient counting and localization framework for off grid targets in WSNs. IEEE Commun. Lett. 21(4), 809–812 (2017)

    Article  MathSciNet  Google Scholar 

  31. J.A. Tropp, Greed is good: algorithmic results for sparse approximation. IEEE Trans. Information Theory. 50(10), 2231–2242 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Y. Tao, G. Zhang, T. Tao, Y. Leng, H. Leung, Frequency-Agile coherent radar target sidelobe suppression based on sparse Bayesian learning, in 2019 IEEE MTT-S International Microwave Biomedical Conference (2019), pp. 1–4

  33. G. Tang, B.N. Bhaskar, P. Shah, B. Recht, Compressed sensing off the grid. IEEE Trans. Inf. Theory. 59(11), 7465–7490 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Y. Tao, G. Zhang, T. Tao, Y. Leng, H. Leung, Frequency-agile coherent radar target sidelobe suppression based on sparse Bayesian learning, in 2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC) (2019), pp. 1–4

  35. T. Wang, C. Liu, W. Chen, Z. Song, J. Jiang, Sparse imaging using modified 2-D matrix pencil method in FD-MIMO radar, in Proc. IEEE Asia–Pacific Conf. Synth. Aperture Radar (APSAR), Tsukuba, Japan, Sep (2013), pp. 605–608

  36. Q. Wang, Z. Zhao, Z. Chen, Z. Nie, Grid evolution method for DOA estimation. IEEE Trans. Signal Process. 66(9), 2374–2383 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Z. Yang, L. Xie, C. Zhang, A discretization-free sparse and parametric approach for linear array signal processing. IEEE Trans. Signal Process. 62(19), 4959–4973 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Z. Yang, L. Xie, On gridless sparse methods for multi-snapshot direction of arrival estimation. Circuits Syst. Signal Process. 36(8), 3370–3384 (2017)

    Article  MATH  Google Scholar 

  39. Z. Yang, L. Xie, On gridless sparse methods for line spectral estimation from complete and incomplete data. IEEE Trans. Signal Process. 63(12), 3139–3153 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Z. Yang, L. Xie, Enhancing sparsity and resolution via reweighted atomic norm minimization. IEEE Trans. Signal Process. 64(4), 995–1006 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Z. Yang, C. Zhang, L. Xie, Robustly stable signal recovery in compressed sensing with structured matrix perturbation. IEEE Trans. Signal Process. 60(9), 4658–4671 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. H. Zhu, G. Leus, G.B. Giannakis, Sparsity-cognizant total least-squares for perturbed compressive sampling. IEEE Trans. Signal Process. 59(5), 2002–2016 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China No. 62171210.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Wang.

Ethics declarations

Conflict of interest

No conflict of interest exits in the submission of this manuscript, and the manuscript is approved by all authors for publication. I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part. All the authors listed have approved the manuscript that is enclosed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wang, F. A Sparse Reconstruction Algorithm Based on Constrained Inhomogeneous Grid Optimization. Circuits Syst Signal Process 42, 4809–4835 (2023). https://doi.org/10.1007/s00034-023-02333-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02333-2

Keyword

Navigation