Skip to main content
Log in

Robust Diffusion Recursive Least M-Estimate Adaptive Filtering and Its Performance Analysis

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a robust distributed adaptive algorithm called diffusion recursive least M-estimate (DRLM), which enhances the robustness of the diffusion recursive least square (DRLS) algorithm against impulsive noise by incorporating the strong resistance to impulsive noise of the modified Huber function (MHF). However, the tracking speed of the proposed DRLM algorithm is not favorable in scenario where the network parameter vector of interest changes abruptly. To overcome this drawback, a new variable forgetting factor (VFF) strategy is devised and the VFF-DRLM algorithm is obtained. Then, the asymptotic unbiasedness and steady-state network mean square deviation (NMSD) performance of the DRLM algorithm are analyzed. Finally, the accuracy of the steady-state analysis result of the DRLM algorithm and the superiority of the proposed algorithms compared to other competing algorithms are demonstrated by extensive numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author on request.

References

  1. R. Abdolee, S. Saur, B. Champagne, A.H. Sayed, Diffusion LMS localization and tracking algorithm for wireless cellular networks, in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada (2013), pp. 4598–4602

  2. F.S. Cattivelli, C.G. Lopes, A.H. Sayed, Diffusion recursive least-squares for distributed estimation over adaptive networks. IEEE Trans. Signal Process. 56(5), 1865–1877 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. S.-C. Chan, Y.-X. Zou, A recursive least m-estimate algorithm for robust adaptive filtering in impulsive noise: fast algorithm and convergence performance analysis. IEEE Trans. Signal Process. 52(4), 975–991 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Corke, T. Wark, R. Jurdak, W. Hu, P. Valencia, D. Moore, Environmental wireless sensor networks. Proc. IEEE. 98(11), 1903–1917 (2010)

    Article  Google Scholar 

  5. L. Li, H. Zhao, A robust total least mean m-estimate adaptive algorithm for impulsive noise suppression. IEEE Trans. Circuits Syst. II Exp. Briefs. 67(4), 800–804 (2020)

    MathSciNet  Google Scholar 

  6. C.G. Lopes, A.H. Sayed, Distributed adaptive incremental strategies: formulation and performance analysis. in 2006 IEEE International Conference on Acoustics Speed and Signal Processing Proceedings, Toulouse, France (2006), pp. III-584-III-587

  7. C.G. Lopes, A.H. Sayed, Diffusion least-mean squares over adaptive networks: formulation and performance analysis. IEEE Trans. Signal Process. 56(7), 3122–3136 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Lv, H. Zhao, Robust multi-task diffusion least mean M-estimate adaptive algorithm and its performance analysis. IEEE Trans. Circuits Syst. II Exp. Briefs 69(4), 2386–2390 (2022)

    Google Scholar 

  9. S. Lv, H. Zhao, L. Zhou, Robust proportionate normalized least mean M-estimate algorithm for block-sparse system identification. IEEE Trans. Circuits Syst. II Exp. Briefs 69(1), 234–238 (2020)

    Google Scholar 

  10. W. Ma, J. Duan, G. Gui, B. Chen, Robust diffusion recursive adaptive filtering algorithm based on lp-norm, in 2016 35th Chinese Control Conference (CCC), Chengdu (2016) pp. 1404–1408.

  11. A. Naeimi Sadigh, H. Zayyani, A proportionate robust diffusion recursive least exponential hyperbolic cosine algorithm for distributed estimation. IEEE Trans. Circuits Syst. II Exp. Briefs. 69(4), 2381–2385 (2022)

    Google Scholar 

  12. A.H. Sayed, Fundamentals of Adaptive Filtering (Wiley, Hoboken, 2003)

    Google Scholar 

  13. S.-Y. Tu, A.H. Sayed, Diffusion strategies outperform consensus strategies for distributed estimation over adaptive networks. IEEE Trans. Signal Process. 60(12), 6217–6234 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Wang, H. Zhao, Robust adaptive least mean M-estimate algorithm for censored regression. IEEE Trans. Syst. Man Cybern. Syst. 52(8), 5165–5174 (2022)

    Article  Google Scholar 

  15. W. Xu, H. Zhao, S. Lv, Robust constrained affine-projection-like adaptive filtering algorithms using the modified huber function. Circuits Syst. II Exp. Briefs IEEE Trans. (2022). https://doi.org/10.1109/TCSII.2022.3218714

    Article  Google Scholar 

  16. Y. Yu, H. Zhao, R.C. de Lamare, Y. Zakharov, L. Lu, Robust distributed diffusion recursive least squares algorithms with side information for adaptive networks. IEEE Trans. Signal Process. 67(6), 1566–1581 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. Yu, H. He, T. Yang, X. Wang, R.C. de Lamare, Diffusion normalized least mean M-estimate algorithms: design and performance analysis. IEEE Trans. Signal Process. 68, 2199–2214 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Zhao, B. Tian, Robust power system forecasting-aided state estimation with generalized maximum mixture correntropy unscented kalman filter. IEEE Trans. Instrum. Meas. 71, 1–10 (2022)

    Google Scholar 

  19. H. Zhao, Y. Chen, S. Lv, Robust diffusion total least mean M-estimate adaptive filtering algorithm and its performance analysis. IEEE Trans. Circuits Syst. II Exp. Briefs. 69(2), 654–658 (2022)

    Google Scholar 

  20. Y. Zhu, H. Zhao, X. He, Z. Shu, B. Chen, Cascaded random fourier filter for robust nonlinear active noise control. IEEE ACM Trans. Audio Speech Lang. Process. 30, 2188–2200 (2022)

    Article  Google Scholar 

  21. Y. Zhu, H. Zhao, X. Zeng, B. Chen, Robust generalized maximum correntropy criterion algorithms for active noise control. IEEE ACM Trans. Audio Speech Lang. Process. 28, 1282–1292 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Natural Science Foundation of China (grant: 62171388, 61871461, 61571374), and Fundamental Research Funds for the Central Universities (Grant: 2682021ZTPY091).

Funding

National Natural Science Foundation of China, 62171388, Haiquan Zhao, 61871461, Haiquan Zhao, 61571374, Haiquan Zhao, Fundamental Research Funds for the Central Universities, 2682021ZTPY091, Haiquan Zhao.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiquan Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

1.1 Detailed Derivation of the DRLM Algorithm

Similar to [2], we first update the matrix \({\varvec{P}}_{k,i}\) from \({\varvec{P}}_{k,i - 1}\) by using the rank-1 update, i.e.,

$$ {\varvec{P}}_{k,i}^{0} \leftarrow \lambda^{ - 1} {\varvec{P}}_{k,i - 1} $$

From node \(l = 1\) to \(N\), repeat:

$$ \begin{aligned} {\varvec{P}}_{k,i}^{l} \leftarrow&\, \left[ {\left( {{\varvec{P}}_{k,i}^{l - 1} } \right)^{ - 1} + c_{l,k} q_{l} (i){\varvec{u}}_{l,i}^{T} {\varvec{u}}_{l,i} } \right]^{ - 1} \hfill \\ {\varvec{P}}_{k,i} \leftarrow &\,{\varvec{P}}_{k,i}^{N} \hfill \\ \end{aligned} $$
(A-1)

where the matrix \({\varvec{P}}_{k,i}^{l}\) denotes the intermediate result after every rank-1 update. Actually, we need only consider the neighbors of node k, from (A-1) and using the matrix inversion lemma, we can obtain

$$ {\varvec{P}}_{k,i} \leftarrow \lambda^{ - 1} {\varvec{P}}_{k,i - 1} $$

For node \(l \in {\mathcal{N}}_{k}\), repeat:

$$ {\varvec{P}}_{k,i} \leftarrow {\varvec{P}}_{k,i} - \frac{{c_{l,k} q_{l} (i){\varvec{P}}_{k,i} {\varvec{u}}_{l,i}^{T} {\varvec{u}}_{l,i} {\varvec{P}}_{k,i} }}{{1 + c_{l,k} q_{l} (i){\varvec{u}}_{l,i} {\varvec{P}}_{k,i} {\varvec{u}}_{l,i}^{T} }} $$
(A-2)

Next, we define the matrices \({\mathbf{\mathcal{D}}}_{i}^{l}\), \({\mathbf{\mathcal{U}}}_{i}^{l}\), \({\mathbf{\mathcal{W}}}_{k,i}^{l}\) and \({\mathbf{\mathcal{Q}}}_{i}^{l}\) as follows:

$$ {\mathbf{\mathcal{D}}}_{i}^{l} = col\left\{ {d_{l} (i),d_{l - 1} (i),...,d_{1} (i),{\mathbf{\mathcal{D}}}_{i - 1} } \right\}\quad $$
$$ {\mathbf{\mathcal{U}}}_{i}^{l} = col\left\{ {{\varvec{u}}_{l,i} ,{\varvec{u}}_{l - 1,i} ,...,{\varvec{u}}_{1,i} ,{\mathbf{\mathcal{U}}}_{i - 1} } \right\} $$
$$ {\mathbf{\mathcal{W}}}_{k,i}^{l} = diag\left\{ {c_{l,k} ,c_{l - 1,k} ,...,c_{1,k} ,\lambda {\mathbf{\mathcal{W}}}_{k,i - 1} } \right\} $$
$$ {\mathbf{\mathcal{Q}}}_{i}^{l} = diag\left\{ {q_{l} (i),q_{l - 1} (i),...,q_{1} (i),{\mathbf{\mathcal{Q}}}_{i - 1} } \right\} $$

Then, the intermediate estimate vector can be given by

$$ \user2{\varphi }_{k,i}^{l} = {\varvec{P}}_{k,i}^{l} ({\mathbf{\mathcal{U}}}_{i}^{l} )^{T} {\mathbf{\mathcal{Q}}}_{i}^{l} {\mathbf{\mathcal{W}}}_{k,i}^{l} {\mathbf{\mathcal{D}}}_{i}^{l} $$
(A-3)

where

$$ {\varvec{P}}_{k,i}^{l} = \left[ {\lambda^{i + 1}{\varvec{\varPi}}+ ({\mathbf{\mathcal{U}}}_{i}^{l} )^{T} {\mathbf{\mathcal{Q}}}_{i}^{l} {\mathbf{\mathcal{W}}}_{k,i}^{l} {\mathbf{\mathcal{U}}}_{i}^{l} } \right]^{ - 1} $$
(A-4)

Since we have \(\user2{\varphi }_{k,i - 1} = \user2{\varphi }_{k,i - 1}^{N} \triangleq \user2{\varphi }_{k,i}^{0}\), the \(\user2{\varphi }_{k,i}\) can be updated recursively from \(\user2{\varphi }_{k,i - 1}\) by instead updating \(\user2{\varphi }_{k,i}^{N}\) recursively from \(\user2{\varphi }_{k,i}^{0}\). Assuming that \(j\) is the minimum index satisfying \(c_{j,k} \ne 0\), \(\user2{\varphi }_{k,i}^{j}\) can be deduced from \(\user2{\varphi }_{k,i}^{0}\) as follows

$$ \begin{aligned} \user2{\varphi }_{k,i}^{j} = & {\varvec{P}}_{k,i}^{j} ({\mathbf{\mathcal{U}}}_{i}^{j} )^{T} {\mathbf{\mathcal{Q}}}_{i}^{j} {\mathbf{\mathcal{W}}}_{k,i}^{j} {\mathbf{\mathcal{D}}}_{i}^{j} \\ & = \underbrace {{{\varvec{P}}_{k,i}^{0} ({\mathbf{\mathcal{U}}}_{i}^{0} )^{T} {\mathbf{\mathcal{Q}}}_{i}^{0} {\mathbf{\mathcal{W}}}_{k,i}^{0} {\mathbf{\mathcal{D}}}_{i}^{0} }}_{{\user2{\varphi }_{k,i - 1} }} + c_{j,k} q_{j} (i){\varvec{P}}_{k,i}^{0} {\varvec{u}}_{j,i}^{T} \\ & \left( {1 - \frac{{c_{j,k} q_{j} (i){\varvec{u}}_{j,i} {\varvec{P}}_{k,i}^{0} {\varvec{u}}_{j,i}^{T} }}{{1 + c_{j,k} q_{j} (i){\varvec{u}}_{j,i} {\varvec{P}}_{k,i}^{0} {\varvec{u}}_{j,i}^{T} }}} \right)d_{j} (i) \\ & - \frac{{c_{j,k} q_{j} (i){\varvec{P}}_{k,i}^{0} {\varvec{u}}_{j,i}^{T} {\varvec{u}}_{j,i} }}{{1 + c_{j,k} q_{j} (i){\varvec{u}}_{j,i} {\varvec{P}}_{k,i}^{0} {\varvec{u}}_{j,i}^{T} }}\underbrace {{{\varvec{P}}_{k,i}^{0} ({\mathbf{\mathcal{U}}}_{i}^{0} )^{T} {\mathbf{\mathcal{Q}}}_{i}^{0} {\mathbf{\mathcal{W}}}_{k,i}^{0} {\mathbf{\mathcal{D}}}_{i}^{0} }}_{{\user2{\varphi }_{k,i - 1} }} \\ & = \user2{\varphi }_{k,i - 1} + \frac{{c_{j,k} q_{j} (i){\varvec{P}}_{k,i}^{0} {\varvec{u}}_{j,i}^{T} }}{{1 + c_{j,k} q_{j} (i){\varvec{u}}_{j,i} {\varvec{P}}_{k,i}^{0} {\varvec{u}}_{j,i}^{T} }}(d_{j} (i) - {\varvec{u}}_{j,i} \user2{\varphi }_{k,i - 1} ) \\ \end{aligned} $$
(A-5)

where

$$ ({\mathbf{\mathcal{U}}}_{i}^{j} )^{T} {\mathbf{\mathcal{Q}}}_{i}^{j} {\mathbf{\mathcal{W}}}_{k,i}^{j} {\mathbf{\mathcal{D}}}_{i}^{j} = \left[ {({\mathbf{\mathcal{U}}}_{i}^{0} )^{T} {\mathbf{\mathcal{Q}}}_{i}^{0} {\mathbf{\mathcal{W}}}_{k,i}^{0} {\mathbf{\mathcal{D}}}_{i}^{0} + c_{j,k} q_{j} (i){\varvec{u}}_{j,i}^{T} d_{j} (i)} \right] $$

and

$$ {\varvec{P}}_{k,i}^{j} = \left[ {{\varvec{P}}_{k,i}^{0} - \frac{{c_{j,k} q_{j} (i){\varvec{P}}_{k,i}^{0} {\varvec{u}}_{j,i}^{T} {\varvec{u}}_{j,i} {\varvec{P}}_{k,i}^{0} }}{{1 + c_{j,k} q_{j} (i){\varvec{u}}_{j,i} {\varvec{P}}_{k,i}^{0} {\varvec{u}}_{j,i}^{T} }}} \right] $$
(A-6)

Similarly, \(\user2{\varphi }_{k,i}^{l}\) can be updated from \(\user2{\varphi }_{k,i}^{l - 1}\) recursively, for \(l > j\), repeat:

$$ \begin{aligned} \user2{\varphi }_{k,i}^{l} =&\, {\varvec{P}}_{k,i}^{l} \left[ {({\mathbf{\mathcal{U}}}_{i}^{l - 1} )^{T} {\mathbf{\mathcal{Q}}}_{i}^{l - 1} {\mathbf{\mathcal{W}}}_{k,i}^{l - 1} {\mathbf{\mathcal{D}}}_{i}^{l - 1} + c_{l,k} q_{l} (i){\varvec{u}}_{l,i}^{T} d_{l} (i)} \right] \\ =&\, \user2{\varphi }_{k,i}^{l - 1} + \frac{{c_{l,k} q_{l} (i){\varvec{P}}_{k,i}^{l - 1} {\varvec{u}}_{l,i}^{T} (d_{l} (i) - {\varvec{u}}_{l,i} \user2{\varphi }_{k,i}^{l - 1} )}}{{1 + c_{l,k} q_{l} (i){\varvec{u}}_{l,i} {\varvec{P}}_{k,i}^{l - 1} {\varvec{u}}_{l,i}^{T} }} \\ \end{aligned} $$
(A-7)

In ight of (A-2), (A-5) and (A-7), we can summary the increment update process as follows

$$ \user2{\varphi }_{k,i}^{{}} \leftarrow {\varvec{w}}_{k,i - 1} $$
$$ {\varvec{P}}_{k,i}^{{}} \leftarrow \lambda^{ - 1} {\varvec{P}}_{k,i - 1} $$

for \(l = 1\) to \(N\), repeat

$$ \user2{\varphi }_{k,i}^{{}} \leftarrow \user2{\varphi }_{k,i}^{{}} + \frac{{c_{l,k} q_{l} (i){\varvec{P}}_{k,i}^{{}} {\varvec{u}}_{l,i}^{T} \left[ {d_{l} (i) - {\varvec{u}}_{l,i} \user2{\varphi }_{k,i}^{{}} } \right]}}{{1 + c_{l,k} q_{l} (i){\varvec{u}}_{l,i} {\varvec{P}}_{k,i}^{{}} {\varvec{u}}_{l,i}^{T} }} $$
(A-8)
$$ {\varvec{P}}_{k,i}^{{}} \leftarrow {\varvec{P}}_{k,i}^{{}} - \frac{{c_{l,k} q_{l} (i){\varvec{P}}_{k,i}^{{}} {\varvec{u}}_{l,i}^{T} {\varvec{u}}_{l,i} {\varvec{P}}_{k,i}^{{}} }}{{1 + c_{l,k} q_{l} (i){\varvec{u}}_{l,i} {\varvec{P}}_{k,i}^{{}} {\varvec{u}}_{l,i}^{T} }} $$
(A-9)

Finally, the above obtained intermediate weight vectors are weighted and combined, and the weight vector \({\varvec{w}}_{k,i}\) is given by

$$ {\varvec{w}}_{k,i} = \sum\limits_{{l \in {\mathcal{N}}_{k} }} {a_{l,k} } \user2{\varphi }_{l,i} $$
(A-10)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, S., Zhao, H. Robust Diffusion Recursive Least M-Estimate Adaptive Filtering and Its Performance Analysis. Circuits Syst Signal Process 42, 4929–4952 (2023). https://doi.org/10.1007/s00034-023-02343-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02343-0

Keywords

Navigation