Skip to main content
Log in

Low Complexity Super-Resolution Wideband DOA Estimation for LFM Signals Using FFT Dechirp Algorithm with a Few Snapshots

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Wideband linear frequency modulation (LFM) signals are widely used in radar, sonar, mobile, and similar applications. One of the common problems of algorithms for estimating the direction of arrival (DOA) of LFM signals is that the number of snapshots must be large for good estimation. Therefore, they are not suitable for real-time and low-power applications. In this paper, we proposed a method of estimating DOA based on the sparse iterative covariance (SPICE) algorithm, which has features such as low computational complexity for the uniform linear array (ULA) using the Fourier transform (FFT). We first developed the dechirp process for linear frequency modulation signals using the Fourier transform. Then we modified the SPICE algorithm for linear arrays. Finally, we have obtained the calculation of the DOA estimation for a few snapshots with low computational complexity and high resolution. Compared to other methods, the simulation results of the proposed LSPICE algorithm show an increase in estimation accuracy, higher resolution, more acceptable accuracy in low SNRs, less error in high SNRs, favorable response with low snapshots, and lower computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Ben, X. Zheng, Y. Wang, N. Zhang, X. Zhang, A local search maximum likelihood parameter estimator of chirp signal. Appl. Sci. 11(2), 673 (2021). https://doi.org/10.3390/app11020673

    Article  Google Scholar 

  2. H. Chen, T. Ballal, T.Y. Al-Naffouri, DOA estimation with non-uniform linear arrays: a phase-difference projection approach. IEEE Wirel. Commun. Lett. 10(11), 2435–2439 (2021). https://doi.org/10.1109/LWC.2021.3102402

    Article  Google Scholar 

  3. H. Chung, Y. Mi Park, S. Kim, Wideband DOA estimation on co-prime array via atomic norm minimization. Energies 13, 3235 (2020). https://doi.org/10.3390/en13123235

    Article  Google Scholar 

  4. Y. Cui, J. Wang, Wideband LFM interference suppression based on fractional Fourier transform and projection techniques. Circuits Syst. Signal Process 33(2), 613–627 (2019). https://doi.org/10.1007/s00034-013-9642-z

    Article  MathSciNet  Google Scholar 

  5. K. Cui, W. Wu, X. Chen, J. Huang, N. Yuan, 2-D DOA estimation of LFM signals based on dechirping algorithm and uniform circle array. Radioengineering. 26, 299–308 (2017). https://doi.org/10.13164/re.2017.0299

    Article  Google Scholar 

  6. H. Darvishi, Mohammad Ali Sebt low elevation angle estimation using an iterative array processing method. J. Commun. Technol. Electron. 64, 1276–1282 (2019). https://doi.org/10.1134/S1064226919110056

    Article  Google Scholar 

  7. A. Delmer, A. Ferréol, P. Larzabal, Selection of regularization parameter in sparse inverse problems for DOA estimation. J. Phys. Conf. Ser. 1476, 012001 (2020). https://doi.org/10.1088/1742-6596/1476/1/012001

    Article  Google Scholar 

  8. W. Du, D.L. Su, S.G. Xie et al., A fast calculation method for the receiving mutual impedances of uniform circular arrays. IEEE Antennas Wirel. Propag. Lett. 11, 893–896 (2012). https://doi.org/10.1109/LAWP.2012.2211329

    Article  Google Scholar 

  9. E. Dubrovinskaya, V. Kebkal, O. Kebkal, K. Kebkal, P. Casari, Underwater localization via wideband direction-of-arrival estimation using acoustic arrays of arbitrary shape. Sensors 20(14), 3862 (2020). https://doi.org/10.3390/s20143862

    Article  Google Scholar 

  10. K. Gowri, P. Palanisamy, Two dimensional direction of arrival estimation algorithm for coherent signals using three parallel uniform linear arrays. J. Commun. Technol. Electron. 64, 1383–1390 (2019). https://doi.org/10.1134/S106422691912009X

    Article  Google Scholar 

  11. V. Jain, W.D. Blair, Filter design for steady-state tracking of maneuvering targets with LFM waveforms. IEEE Trans. Aerosp. Electron. Syst. 45(2), 765–773 (2009). https://doi.org/10.1109/TAES.2009.5089558

    Article  Google Scholar 

  12. S.-H. Jeong, Y.-S. Won, D. Shin, Fast DOA estimation method based on MUSIC algorithm combined newton method for FMCW radar. IEEE MTT-S Int. Conf. Microwaves Intell. Mobil. (ICMIM) 2019, 1–5 (2019). https://doi.org/10.1109/ICMIM.2019.8726478

    Article  Google Scholar 

  13. Y. Jiang, M.-H. He, W.-J. Liu, J. Han, M.-Y. Feng, Underdetermined wideband DOA estimation for off-grid targets: a computationally efficient sparse Bayesian learning approach. IET Radar Sonar Navig. 14, 1583–1591 (2020). https://doi.org/10.1049/iet-rsn.2020.0001

    Article  Google Scholar 

  14. Y. Jiang, D. Li, X. Wu, W.-P. Zhu, A gridless wideband DOA estimation based on atomic norm minimization, in 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), (2020), pp. 1–5. https://doi.org/10.1109/SAM48682.2020.9104308.

  15. M. J.Jirhandeh, M. H. Kahae, Super-resolution DOA estimation for wideband signals using arbitrary linear arrays without focusing matrices, (2021). https://doi.org/10.48550/arXiv.2103.03244.

  16. M.J. Jirhandeh, M.H. Kahaei, Super-resolution method for coherent DOA estimation of multiple wideband sources. Signal Process. 189, 108249 (2021). https://doi.org/10.1016/j.sigpro.2021.108249

    Article  Google Scholar 

  17. C. Kaibo, Z. Xiaofa, C. Xi, W. Qingping, Y. Naichang, 2D DOA estimation of LFM sources using FRFT-based and mode-space-based algorithm. Int. Conf. Microwave Millim. Wave Technol. (ICMMT) 2019, 1–3 (2019). https://doi.org/10.1109/ICMMT45702.2019.8992510

    Article  Google Scholar 

  18. M. Khodja, A. Belouchrani, K. Abed-Meraim, Performance analysis for time-frequency MUSIC algorithm in presence of both additive noise and array calibration errors. EURASIP J. Adv. Signal Process. 2012(1), 1–11 (2012). https://doi.org/10.1186/1687-6180-2012-94

    Article  Google Scholar 

  19. P. Li, J. Li, G. Zhao, Low complexity DOA estimation for massive UCA with single snapshot. J. Syst. Eng. Electron. 33(1), 22–27 (2022). https://doi.org/10.23919/JSEE.2022.000003

    Article  Google Scholar 

  20. J.C. Lin, X.C. Ma, S.F. Yan et al., Time-frequency multiinvariance esprit for DOA estimation. IEEE Antennas Wirel. Propag. Lett. 15, 770–773 (2015). https://doi.org/10.1109/LAWP.2015.2473664

    Article  Google Scholar 

  21. Y. Liu, H. Cao, Y. Wu, K. Wang, Fast and accurate approach for DOA estimation of coherent signals. Wirel. Commun. Mob. Comput. 2022, 1–7 (2022). https://doi.org/10.1155/2022/3652936

    Article  Google Scholar 

  22. Q. Liu, Y. He, K. Ding, Q. Xie, Complex multisnapshot sparse bayesian learning for offgrid DOA estimation. Int. J. Antennas Propag. (2022). https://doi.org/10.1155/2022/4500243

    Article  Google Scholar 

  23. P. Luo, K. Liu, W. Shi, G. Yan, 2-D DOA estimation of wideband LFM signals for arbitrary planar array, in IEEE 10th international conference on signal processing proceedings, pp. 307–310 (2010). https://doi.org/10.1109/ICOSP.2010.5656080

  24. J.R. Mohammed, High-resolution direction of arrival estimation method based on sparse arrays with minimum number of elements. J. Telecommun. Inf. Technol. 1, 8–14 (2021). https://doi.org/10.26636/jtit.2021.143720

    Article  Google Scholar 

  25. R. Mulinde, M. Kaushik, M. Attygalle, S.M. Aziz, Low-complexity aggregation techniques for DOA estimation over wide-RF bandwidths. Electronics 10, 1707 (2021). https://doi.org/10.3390/electronics10141707

    Article  Google Scholar 

  26. Y.J. Pan, X.F. Zhang, S.Y. Xie et al., An ultra-fast DOA estimator with circular array interferometer using lookup table method. Radioengineering 24(8), 850–856 (2015). https://doi.org/10.13164/re.2015.0850

    Article  Google Scholar 

  27. S. Shi, H. Zeng, H. Yue, C. Ye, J. Li, DOA estimation for non-gaussian signals: three-level nested array and a successive SS-MUSIC algorithm. Int. J. Antennas Propag. 2022, 1–14 (2022). https://doi.org/10.1155/2022/9604664

    Article  Google Scholar 

  28. N. Smaili, M. Djeddou, K. Ghanem et al., Effect of oblique projection beamforming on the achievable rate in massive MIMO system. J. Commun. Technol. Electron. 63, 1296–1302 (2018). https://doi.org/10.1134/S1064226918110128

    Article  Google Scholar 

  29. P. Stoica, P. Babu, J. Li, New method of sparse parameter estimation in separable models and its use for spectral analysis of irregularly sampled data. IEEE Trans. Signal Process. 59(1), 35–47 (2011). https://doi.org/10.1109/TSP.2010.2086452

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Su, H.H. Tao, X. Rao et al., Coherently integrated cubic phase function for multiple LFM signals analysis. Electron. Lett. 51(5), 411–413 (2020). https://doi.org/10.1049/el.2020.4164

    Article  Google Scholar 

  31. R. Tao, N. Zhang, Y. Wang, Analyzing and compensating the effects of range and Doppler frequency migrations in linear frequency modulation pulse compression radar. IET Radar Sonar Navig. 5(1), 12–22 (2019). https://doi.org/10.1049/ietrsn.2019.0265

    Article  Google Scholar 

  32. C. Wang, J. Che, F. Zhou, J. Hou, C. Li, Single snapshot DOA estimation by minimizing the fraction function in sparse recovery. Math. Probl. Eng. 2020, 1–8 (2020). https://doi.org/10.1155/2020/6163529

    Article  MathSciNet  MATH  Google Scholar 

  33. P. Wang, H.B. Li, P. Djurovic et al., Integrated cubic phase function for linear FM signal analysis. IEEE Trans. Aerosp. Electron. Syst. 46(3), 963–977 (2010). https://doi.org/10.1109/TAES.2010.5545167

    Article  Google Scholar 

  34. P. Wang, Y.H. Li, B. Vucetic, Millimeter wave communications with symmetric uniform circular antenna arrays. IEEE Commun. Lett. 18(8), 1307–1310 (2014). https://doi.org/10.1109/LCOMM.2014.2332334

    Article  Google Scholar 

  35. M. Wang, X.C. Ma, S.F. Yan et al., An auto calibration algorithm for uniform circular array with unknown mutual coupling. IEEE Antennas Wirel. Propag. Lett. 15, 12–15 (2016). https://doi.org/10.1109/LAWP.2015.2425423

    Article  Google Scholar 

  36. S. Wei, Y. Long, R. Liu, Y. Su, A two-step compressed sensing approach for single-snapshot DOA estimation of closely spaced signals. Math. Probl. Eng. 2021, 1–11 (2021). https://doi.org/10.1155/2021/1491097

    Article  MathSciNet  MATH  Google Scholar 

  37. T. Wu, Z. Deng, X. Hu, A. Li, J. Xu, DOA estimation of incoherently distributed sources using importance sampling maximum likelihood. J. Syst. Eng. Electron. 33(4), 845–855 (2022). https://doi.org/10.23919/JSEE.2022.000070

    Article  Google Scholar 

  38. L.-L. Wu, Z.-T. Huang, Coherent SVR learning for wideband direction-of-arrival estimation. IEEE Signal Process. Lett. 26(4), 642–646 (2019). https://doi.org/10.1109/LSP.2019.2901641

    Article  Google Scholar 

  39. H. Wu, Q. Shen, W. Liu, W. Cui, Underdetermined low-complexity wideband DOA estimation with uniform linear arrays, in 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), (2020), pp. 1–5. https://doi.org/10.1109/SAM48682.2020.9104283

  40. Y. Xie, B. Wang, F. Chen, An efficient DOA estimation algorithm based on diagonal-symmetric loading. Math. Probl. Eng., vol. 2021, Article ID 4432040, 9 pages, (2021). https://doi.org/10.1155/2021/4432040.

  41. J. Xu, L. Lan, X. He, S. Zhu, C. Zeng, G. Liao, Y. Zhang, System design and signal processing for frequency diverse array radar. J. Beijing Inst. Technol. 30(1), 1–19 (2018). https://doi.org/10.15918/j.jbit1004-0579.2021.004

    Article  MATH  Google Scholar 

  42. W. Yang, Y.W. Shi, FRFT based method to estimate DOA for wideband signal. Adv. Mater. Res. 712–715, 2716–2720 (2013). https://doi.org/10.4028/www.scientific.net/amr.712-715.2716

    Article  Google Scholar 

  43. G. You, T. Qiu, J. Yang, A novel DOA estimation algorithm of cyclostationary signal based on UCA in impulsive noise. AEU Int. J. Electron. Commun. 67(6), 491–499 (2013). https://doi.org/10.1016/j.aeue.2012.11.006

    Article  Google Scholar 

  44. J.X. Yu, L. Zhang, K.H. Liu et al., Separation and localization of multiple distributed wideband chirps using the fractional Fourier transform". EURASIP J. Wirel. Commun. Netw. 266, 1–8 (2015). https://doi.org/10.1186/s13638-015-0497-9

    Article  Google Scholar 

  45. Y.M.D. Zhang, M.G. Amin, B. Himed, Joint DOD/DOA estimation in MIMO radar exploiting time-frequency signal representations. EURASIP J. Adv. Signal Process. 1, 1–10 (2012). https://doi.org/10.1186/1687-6180-2012-102

    Article  Google Scholar 

  46. H.J. Zhang, G.A. Bi, Y.L. Cai et al., DOA estimation of closely-spaced and spectrally-overlapped sources using a STFTbased MUSIC algorithm. Digit. Signal Process. 52, 25–34 (2016). https://doi.org/10.1016/j.dsp.2016.01.015

    Article  Google Scholar 

  47. L. Zhang, C.Y. Hung, J. Yu et al., Linear chirp signal DOA estimation using sparse time-frequency dictionary. Int. J. Wireless Inf. Netw. 27, 568–574 (2020). https://doi.org/10.1007/s10776-020-00489-1

    Article  Google Scholar 

  48. X. Zhang, H. Tao, J. Xie, X. Jiang, A novel wideband DOA estimation method based on a fast sparse frame. IET Commun. 15, 935–945 (2021). https://doi.org/10.1049/cmu2.12132

    Article  Google Scholar 

  49. Z. Zhang, H. Wang, H. Yao, Time reversal and fractional fourier transform-based method for LFM signal detection in underwater multi-path channel. Appl. Sci. 11(2), 583 (2021). https://doi.org/10.3390/app11020583

    Article  Google Scholar 

Download references

Funding

The Authors would like to collectively declare that there have been no funding resources involved in the preparation and production of this research work.

Author information

Authors and Affiliations

Authors

Contributions

APS contributed to conceptualization, methodology, software, validation, and writing. JJ contributed to formal analysis and writing—review and editing. MHF-D contributed to supervision, review, and editing. MMG contributed to supervision, review, and editing.

Corresponding author

Correspondence to Jasem Jamali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Partovi Sangi, A., Jamali, J., Fatehi-Dindarlou, M.H. et al. Low Complexity Super-Resolution Wideband DOA Estimation for LFM Signals Using FFT Dechirp Algorithm with a Few Snapshots. Circuits Syst Signal Process 42, 6591–6613 (2023). https://doi.org/10.1007/s00034-023-02403-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02403-5

Keywords

Navigation