Skip to main content
Log in

Optimization and Minimum-Energy Approaches for Private Message Security in the Wavelet Domain of Audio Signals

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In the field of embedding digital information or private message into an audio signal, signal-to-noise ratio (SNR) and bit error rate (BER) are commonly performance indexes in measuring the distortion and robustness. The larger the value of SNR, the better the audio quality of the embedded information, and the smaller the value of BER, the more resistant the embedded information is to malicious attacks. This study first considers the unknown coefficients in the discrete wavelet transform and the unknown weights of these coefficients, as well as the state-switching embedded equations in an optimization model to embed digital information or private message. Next, Karush–Kuhn–Tucker theorem and minimum-energy approach play two essential roles to determine the unknown coefficients and the unknown weights so as to complete the information embedding or private message communication. In addition, the extraction of private message is similar to the private message embedding reversely. Finally, this study obtains an essential optimization-based system with state switching for embedding digital information or private message into an audio signal. Experimental results verify that the embedded audio in the proposed method has high SNR and low BER, indicating strong robustness against various attacks, such as re-sampling, amplitude scaling, and mp3 compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

All test audios are paid for by the authors.

7. References

  1. A.-H. Ali, An imperceptible and robust audio watermarking algorithm. EURASIP J. Audio Speech Music Process. (2014). https://doi.org/10.1186/s13636-014-0037-2

    Article  Google Scholar 

  2. A.A. Attari, A.A.B. Shirazi, Robust audio watermarking algorithm based on DWT using Fibonacci numbers. Multimedia Tools and Applications 77(2018), 25607–25627 (2018)

    Article  Google Scholar 

  3. C.S. Burrus, R.A. Gopinath, H. Gao, Introduction to wavelet theory and its application (Prentice-Hall, New Jersey, 1998)

    Google Scholar 

  4. S.-T. Chen, C.-Y. Hsu, H.-N. Huang, Wavelet-domain audio watermarking using optimal modification on low-frequency amplitude. IET Proc. Signal Proc. 9(2), 166–176 (2015)

    Google Scholar 

  5. S.-T. Chen, H.-N. Huang, Optimization-based audio watermarking with integrated quantization embedding. Multimedia Tools Appl. 75(8), 4735–4751 (2016)

    Article  Google Scholar 

  6. S.-T. Chen, H.-N. Huang, C.-C. Chen, K.-K. Tseng, S.-Y. Tu, Adaptive audio watermarking via the optimization point of view on wavelet-based entropy. Digital Signal Proc 23(3), 971–980 (2013)

    Article  MathSciNet  Google Scholar 

  7. S.-T. Chen, H.-N. Huang, C.-J. Chen, G.-D. Wu, Energy-proportion based scheme for audio watermarking. IET Signal Proc. 4(5), 576–587 (2010)

    Article  Google Scholar 

  8. E.K.P. Chong, S.H. ZAK, An introduction to optimization (John Wiley and Sons Inc, New York, 2001)

    MATH  Google Scholar 

  9. P.K. Dhar, T. Shimamure, Blind audio watermarking in transform domain based on singular value decomposition and exponential-log operations. Radioengineering 2017(26), 552–561 (2017)

    Article  Google Scholar 

  10. P. Hu, D. Peng, Z. Yi, Y. Xiang, Robust time-spread echo watermarking using characteristics of host signals. IET Electr. Lett. 52(1), 5–6 (2016)

    Article  Google Scholar 

  11. H.-N. Huang, S.-T. Chen, M.-S. Lin, W.-M. Kung, C.-Y. Hsu, Optimization-based embedding for wavelet-domain audio watermarking. J. Signal Proc. Syst. 80(2), 197–208 (2015)

    Article  Google Scholar 

  12. Y. Huang, S. Tang, C. Bao, Y.-J. Yip, Steganalysis of compressed speech to detect covert Voice over Internet Protocol channels. IET Inf. Secur. 5(1), 26–32 (2011)

    Article  Google Scholar 

  13. IFPI (International Federation of the Phonographic Industry), http://www.ifpi.org

  14. M. Jeyhoon, M. Asgari, L. Ehsan, S. Jalilzadeh, Blind audio watermarking algorithm based on DCT, linear regression and standard deviation. Multimedia Tools Appl. 76(3), 3343–3359 (2016)

    Article  Google Scholar 

  15. S. Katzenbeisser Petitcolas Information Hiding Techniques for Steganography and Digital Watermarking (1999) https://doi.org/10.1201/1079/43263.28.6.20001201/30373.5

  16. F.L. Lewis, Optimal control (John Wiley and Sons, New York, 1986)

    Google Scholar 

  17. J.-F. Li, H.-X. Wang, T. Wu, X.-M. Sun, Q. Qian, Norm ratio-based audio watermarking scheme in dwt domain. Multimedia Tools Appl 77(12), 14481–14497 (2018)

    Article  Google Scholar 

  18. R. Li, S. Xu, H. Yang, Spread spectrum audio watermarking based on perceptual characteristic aware extraction. IET Signal Proc. 10(3), 266–273 (2016)

    Article  Google Scholar 

  19. H. Liu, J. Liu, X. Yan, P. Xue, S. Wan, L. Li, Centroid-based audio steganography scheme in wavelet domain. J Inf Hiding Multimedia Signal Proc. 9(5), 1222–1232 (2018)

    Google Scholar 

  20. Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation, IEEE. Trans. Pattern Anal. Mach. Intel., 11, 674–693, 1989.

  21. I. Natgunanathan, Y. Xiang, Y. Rong, D. Peng, Robust patchwork-based watermarking method for stereo audio signals. Multimedia Tools Appl. 72, 1387–1410 (2014)

    Article  Google Scholar 

  22. M. Nutzinger, Real-time attacks on audio steganography, journal of information hiding and multimedia. Signal Proc. 3(1), 47–65 (2012)

    Google Scholar 

  23. I. Orovic, P. Zogovic, N. Zaric, S. Stankovi, Speech Signals Protection via Logo Watermarking based on the Time-Frequency Analysis. Annal. des Telecommun. 63(6), 276–284 (2008)

    Google Scholar 

  24. PEAQ information from OPTICOM http://www.opticom.de/technology/technology.html.

  25. PQevalAudioMatlab and C implementation of PEAQ Basic Model http://www-mmsp.ece.mcgill.ca/Documents/Software/index.html

  26. H.S. Saini, D. Arora, M. Verma, An effective audio watermarking approach with high data embedding. Int. J. Innov. Technol. Explor. Eng. 8(4), 185–219 (2019)

    Google Scholar 

  27. Salovarda, M., Bolkovac, I., Domitrovic, H.:. Estimating perceptual audio system quality using PEAQ algorithm,” 18 th Int. Conf. Appl. Electromagnet. Commun., pp. 1–4, October, 2005.

  28. A. Singha, M.A. Ullah, Development of an audio watermarking with decentralization of the watermarks. J. King Saud Univ. Comput. Inf. Sci. (2020). https://doi.org/10.1016/j.jksuci.2020.09.007

    Article  Google Scholar 

  29. T.K. Tewari, V. Saxena, J.P. Gupta, A digital audio watermarking algorithm using selective mid band DCT coefficients and energy threshold. Int. J. Speech Technol. 17, 365–371 (2014)

    Article  Google Scholar 

  30. K. Vivekananda Bhat, A.K. Das, J.‐H. Lee, Design of a blind quantization‐based audio watermarking scheme using singular value decomposition. Concurr. Comput. Pract. Exp., 32(18), (2019).

  31. X.Y. Wang, Q.L. Shi, S.M. Wang, H.Y. Yang, A blind robust digital watermarking using invariant exponent moments. Int. J. Electron. Commun. 70, 416–426 (2016)

    Article  Google Scholar 

  32. S. Wang, C. Wang, W. Yuan, L. Wang, J. Wang, Secure echo-hiding audio watermarking method based on improved PN sequence and robust principal component analysis. IET Signal Proc. 14(4), 229–242 (2020)

    Article  Google Scholar 

  33. Q. Wu, M. Wu, A novel robust audio watermarking algorithm by modifying the average amplitude in transform domain. Appl. Sci. 8(723), 1–17 (2018)

    Google Scholar 

  34. S.-J. Xiang, Z.-H. Li, Reversible audio data hiding algorithm using noncausal prediction of alterable orders. EURASIP J. Audio Speech Music Proc. 4, 2017 (2017)

    Google Scholar 

  35. S.-J. Xiang, Z.-H. Li, Reversible audio data hiding algorithm using noncausal prediction of alterable orders. EURASIP J. Audio Speech Music Proc. (2017). https://doi.org/10.1186/s13636-017-0101-9

    Article  Google Scholar 

  36. A.U. Yargıçıoğlu, H.G. İlk, Hidden data transmission in mixed excitation linear prediction coded speech using quantisation index modulation. IET Inf. Secur. 4, 158–166 (2010). https://doi.org/10.1049/iet-ifs.2009.0092

    Article  Google Scholar 

  37. M. Zhao, J.-S. Pan, S.-T. Chen, Entropy-based audio watermarking via the point of view on the compact particle swarm optimization. J. Int. Technol. 16(3), 485–495 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors would like to sincerely thank the Editor and anonymous reviewers for their thoughtful and valuable comments, which have significantly improved the quality of this paper. The authors are partially supported by the National Science and Technology Council of Taiwan under the grant 110-2410-H-182-008-MY3.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

S-TC contributed to conceptualization; MZ was involved in methodology; S-TC and HL provided software; S-T C and MZ contributed to validation; S-TC and H-CL were involved in writing—review and editing; and all authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Hao-Chun Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix I

$$ \frac{{\partial J_{1} }}{{\partial {\hat{\mathbf{C}}}_{N} }} = {\mathbf{0}} \Rightarrow \frac{{2({\hat{\mathbf{C}}}_{N} - {\mathbf{C}}_{N} )}}{{{\mathbf{C}}_{N}^{T} {\mathbf{C}}_{N} }} + \lambda_{1} (1 - 2\alpha ){\mathbf{W}}^{T} = {\mathbf{0}} \, $$
(18a)
$$\frac{{\partial J_{1} }}{{\partial \lambda_{1} }} = 0{}_{{}} \Rightarrow (1 - 2\alpha ){\mathbf{W}\hat{C}}_{N} + \alpha \gamma_{1} + (\alpha - 1)\gamma_{0} = 0.$$
(18b)

Multiply (18a) by \({\mathbf{W}}\) and rewrite (18b), we have

$$ 2({\mathbf{W}\hat{C}}_{N} - {\mathbf{WC}}_{N} ) + \lambda_{1} (1 - 2\alpha ){\mathbf{C}}_{N}^{T} {\mathbf{C}}_{N} {\mathbf{WW}}^{T} = {\mathbf{0}} \, $$
(19a)
$$ {\mathbf{W}\hat{C}}_{N} = \frac{{ - \alpha \gamma_{1} + (1 - \alpha )\gamma_{0} }}{1 - 2\alpha }. $$
(19b)

Replacing (19b) to (19a), we have

$$ 2\left[ {\frac{{ - \alpha \gamma_{1} + (1 - \alpha )\gamma_{0} }}{1 - 2\alpha } - {\mathbf{WC}}_{N} } \right] + \lambda_{1} (1 - 2\alpha ){\mathbf{C}}_{N}^{T} {\mathbf{C}}_{N} {\mathbf{WW}}^{T} = {\mathbf{0}} \, $$
(20)

Hence, the optimal solution for the multiplier \(\lambda_{1}\) is

$$ \lambda_{1}^{*} = \frac{{2\left[ {{\mathbf{WC}}_{N} - \frac{{ - \alpha \gamma_{1} + (1 - \alpha )\gamma_{0} }}{1 - 2\alpha }} \right]}}{{(1 - 2\alpha ){\mathbf{C}}_{N}^{T} {\mathbf{C}}_{N} {\mathbf{WW}}^{T} }} \, $$
(21)

Replacing (21) to (18a), the optimal DWT coefficients are

$$ {\hat{\mathbf{C}}}_{N}^{*} = {\mathbf{C}}_{N} - {\mathbf{W}}^{T} ({\mathbf{WW}}^{T} )^{ - 1} \left[ {{\mathbf{WC}}_{N} - \frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha }} \right] $$
(22)

Appendix II

$$ {\text{Minimize}}\frac{{\left( {{\hat{\mathbf{C}}}_{N}^{*} - {\mathbf{C}}_{N} } \right)^{T} \left( {{\hat{\mathbf{C}}}_{N}^{*} - {\mathbf{C}}_{N} } \right)}}{{{\mathbf{C}}_{N}^{T} {\mathbf{C}}_{N} }} $$
(23a)
$$ {\text{Subject to}} \sum\limits_{j = 1}^{N} {w_{j} } = M. $$
(23b)

Use the fact that \({\hat{\mathbf{C}}}_{N}^{*} = {\mathbf{C}}_{N} - {\mathbf{W}}^{T} ({\mathbf{WW}}^{T} )^{ - 1} \left[ {{\mathbf{WC}}_{N} - \frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha }} \right]\), the term \(\frac{{\left( {{\hat{\mathbf{C}}}_{N}^{*} - {\mathbf{C}}_{N} } \right)^{T} \left( {{\hat{\mathbf{C}}}_{N}^{*} - {\mathbf{C}}_{N} } \right)}}{{{\mathbf{C}}_{N}^{T} {\mathbf{C}}_{N} }}\)can be simplified as \(\frac{1}{{\left( {\sum\limits_{j = 1}^{N} {w_{j}^{2} } } \right)\left( {\sum\limits_{j = 1}^{N} {\left| {c_{j} } \right|^{2} } } \right)}}\left\{ {\sum\limits_{j = 1}^{N} {w_{j} } \left| {c_{j} } \right| - \frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha }} \right\}^{2}\)

$$\begin{aligned} & \frac{{\left( {\hat{\mathbf{C}}_{N}^{*} - {\mathbf{C}}_{N} } \right)^{T} \left( {\hat{\mathbf{C}}_{N}^{*} - {\mathbf{C}}_{N} } \right)}}{{{\mathbf{C}}_{N} ^{T} {\mathbf{C}}_{N} }} \hfill \\ & = \frac{{\begin{gathered}\left\{ {{\mathbf{C}}_{N} - {\mathbf{W}}^{T} ({\mathbf{WW}}^{T} )^{{ - 1}} \left[ {{\mathbf{WC}}_{N} - \frac{{(1 - \alpha )\gamma _{0} - \alpha \gamma _{1} }}{{1 - 2\alpha }}} \right] - {\mathbf{C}}_{N} } \right\}^{T}\hfill\\ \left\{ {{\mathbf{C}}_{N} - {\mathbf{W}}^{T} ({\mathbf{WW}}^{T} )^{{ - 1}} \left[ {{\mathbf{WC}}_{N} - \frac{{(1 - \alpha )\gamma _{0} - \alpha \gamma _{1} }}{{1 - 2\alpha }}} \right] - {\mathbf{C}}_{N} } \right\}\end{gathered}}} {{{\mathbf{C}}_{N} ^{T} {\mathbf{C}}_{N} }} \hfill \\ & = \frac{{\left\{ { - {\mathbf{W}}^{T} ({\mathbf{WW}}^{T} )^{{ - 1}} \left[ {{\mathbf{WC}}_{N} - \frac{{(1 - \alpha )\gamma _{0} - \alpha \gamma _{1} }}{{1 - 2\alpha }}} \right]} \right\}^{T} \left\{ { - {\mathbf{W}}^{T} ({\mathbf{WW}}^{T} )^{{ - 1}} \left[ {{\mathbf{WC}}_{N} - \frac{{(1 - \alpha )\gamma _{0} - \alpha \gamma _{1} }}{{1 - 2\alpha }}} \right]} \right\}}}{{{\mathbf{C}}_{N} ^{T} {\mathbf{C}}_{N} }} \hfill \\ &= \frac{{\left\{ {{\mathbf{W}}^{T} ({\mathbf{W}}^{T} )^{{ - 1}} {\mathbf{W}}^{{ - 1}} \left[ {{\mathbf{WC}}_{N} - \frac{{(1 - \alpha )\gamma _{0} - \alpha \gamma _{1} }}{{1 - 2\alpha }}} \right]} \right\}^{T} \left\{ {{\mathbf{W}}^{T} ({\mathbf{WW}}^{T} )^{{ - 1}} \left[ {{\mathbf{WC}}_{N} - \frac{{(1 - \alpha )\gamma _{0} - \alpha \gamma _{1} }}{{1 - 2\alpha }}} \right]} \right\}}}{{{\mathbf{C}}_{N} ^{T} {\mathbf{C}}_{N} }} \hfill \\ &= \frac{{\left\{ {{\mathbf{IW}}^{{ - 1}} \left[ {{\mathbf{WC}}_{N} - \frac{{(1 - \alpha )\gamma _{0} - \alpha \gamma _{1} }}{{1 - 2\alpha }}} \right]} \right\}^{T} \left\{ {{\mathbf{W}}^{T} ({\mathbf{WW}}^{T} )^{{ - 1}} \left[ {{\mathbf{WC}}_{N} - \frac{{(1 - \alpha )\gamma _{0} - \alpha \gamma _{1} }}{{1 - 2\alpha }}} \right]} \right\}}}{{{\mathbf{C}}_{N} ^{T} {\mathbf{C}}_{N} }} \hfill \\ &= \frac{{\left[ {{\mathbf{WC}}_{N} - \frac{{(1 - \alpha )\gamma _{0} - \alpha \gamma _{1} }}{{1 - 2\alpha }}} \right]^{T} \left( {{\mathbf{W}}^{{ - 1}} } \right)^{T} {\mathbf{W}}^{T} ({\mathbf{WW}}^{T} )^{{ - 1}} \left[ {{\mathbf{WC}}_{N} - \frac{{(1 - \alpha )\gamma _{0} - \alpha \gamma _{1} }}{{1 - 2\alpha }}} \right]}}{{{\mathbf{C}}_{N} ^{T} {\mathbf{C}}_{N} }} \hfill \\ &= \frac{{\left[ {{\mathbf{WC}}_{N} - \frac{{(1 - \alpha )\gamma _{0} - \alpha \gamma _{1} }}{{1 - 2\alpha }}} \right]^{T} \left( {{\mathbf{W}}^{T} } \right)^{{ - 1}} {\mathbf{W}}^{T} ({\mathbf{WW}}^{T} )^{{ - 1}} \left[ {{\mathbf{WC}}_{N} - \frac{{(1 - \alpha )\gamma _{0} - \alpha \gamma _{1} }}{{1 - 2\alpha }}} \right]}}{{{\mathbf{C}}_{N} ^{T} {\mathbf{C}}_{N} }} \hfill \\ &= \frac{{\left[ {{\mathbf{WC}}_{N} - \frac{{(1 - \alpha )\gamma _{0} - \alpha \gamma _{1} }}{{1 - 2\alpha }}} \right]^{T} ({\mathbf{WW}}^{T} )^{{ - 1}} \left[ {{\mathbf{WC}}_{N} - \frac{{(1 - \alpha )\gamma _{0} - \alpha \gamma _{1} }}{{1 - 2\alpha }}} \right]}}{{{\mathbf{C}}_{N} ^{T} {\mathbf{C}}_{N} }} \hfill \\ &= \frac{{({\mathbf{WW}}^{T} )^{{ - 1}} \left[ {{\mathbf{WC}}_{N} - \frac{{(1 - \alpha )\gamma _{0} - \alpha \gamma _{1} }}{{1 - 2\alpha }}} \right]^{T} \left[ {{\mathbf{WC}}_{N} - \frac{{(1 - \alpha )\gamma _{0} - \alpha \gamma _{1} }}{{1 - 2\alpha }}} \right]}}{{{\mathbf{C}}_{N} ^{T} {\mathbf{C}}_{N} }} \hfill \\ &= \frac{1}{{\left( {\sum\limits_{{j = 1}}^{N} {w_{j}^{2} } } \right)\left( {\sum\limits_{{j = 1}}^{N} {\left| {c_{j} } \right|^{2} } } \right)}}\left\{ {\left[ {\begin{array}{*{20}c} {w_{1} } & {w_{2} } & {...} & {w_{N} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\left| {c_{1} } \right|} \\ & {\left| {c_{2} } \right|} \\ & \vdots \\ & {\left| {c_{N} } \right|} \\ \end{array} } \right] - \frac{{(1 - \alpha )\gamma _{0} - \alpha \gamma _{1} }}{{1 - 2\alpha }}} \right\}^{T} \\ &\quad\times\left\{ {\left[ {\begin{array}{*{20}c} {w_{1} } & {w_{2} } & {...} & {w_{N} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\left| {c_{1} } \right|} \\ {\left| {c_{2} } \right|} \\ \vdots \\ {\left| {c_{N} } \right|} \\ \end{array} } \right] - \frac{{(1 - \alpha )\gamma _{0} - \alpha \gamma _{1} }}{{1 - 2\alpha }}} \right\} \hfill \\ &= \frac{1}{{\left( {\sum\limits_{{j = 1}}^{N} {w_{j}^{2} } } \right)\left( {\sum\limits_{{j = 1}}^{N} {\left| {c_{j} } \right|^{2} } } \right)}}\left\{ {w_{1} \left| {c_{1} } \right| + w_{2} \left| {c_{2} } \right| + ... + w_{N} \left| {c_{N} } \right| - \frac{{(1 - \alpha )\gamma _{0} - \alpha \gamma _{1} }}{{1 - 2\alpha }}} \right\}^{T}\hfill\\ &\quad\times \left\{ {w_{1} \left| {c_{1} } \right| + w_{2} \left| {c_{2} } \right| + ... + w_{N} \left| {c_{N} } \right| - \frac{{(1 - \alpha )\gamma _{0} - \alpha \gamma _{1} }}{{1 - 2\alpha }}} \right\} \hfill \\ &= \frac{1}{{\left( {\sum\limits_{{j = 1}}^{N} {w_{j}^{2} } } \right)\left( {\sum\limits_{{j = 1}}^{N} {\left| {c_{j} } \right|^{2} } } \right)}}\left\{ {\sum\limits_{{j = 1}}^{N} {w_{j} } \left| {c_{j} } \right| - \frac{{(1 - \alpha )\gamma _{0} - \alpha \gamma _{1} }}{{1 - 2\alpha }}} \right\}^{2}. \hfill \\\end{aligned} $$

In other words, the optimization model above can be rewritten as:

$$ {\text{minimize}}\frac{1}{{\left( {\sum\limits_{j = 1}^{N} {w_{j}^{2} } } \right)\left( {\sum\limits_{j = 1}^{N} {\left| {c_{j} } \right|^{2} } } \right)}}\left\{ {\sum\limits_{j = 1}^{N} {w_{j} } \left| {c_{j} } \right| - \frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha }} \right\}^{2} $$
(24a)
$$ {\text{subject to}}\sum\limits_{j = 1}^{N} {w_{j} } = M. $$
(24b)

In order to minimize \(\frac{1}{{\left( {\sum\limits_{j = 1}^{N} {w_{j}^{2} } } \right)\left( {\sum\limits_{j = 1}^{N} {\left| {c_{j} } \right|^{2} } } \right)}}\left\{ {\sum\limits_{j = 1}^{N} {w_{j} } \left| {c_{j} } \right| - \frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha }} \right\}^{2}\) subject to \(\sum\limits_{j = 1}^{N} {w_{j} } = M,\) we set

$$ H_{2} (w_{j} ,\lambda_{2} ) = \frac{1}{{\left( {\sum\limits_{j = 1}^{N} {w_{j}^{2} } } \right)\left( {\sum\limits_{j = 1}^{N} {\left| {c_{j} } \right|^{2} } } \right)}}\left\{ {\sum\limits_{j = 1}^{N} {w_{j} } \left| {c_{j} } \right| - \frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha }} \right\}^{2} + \lambda_{2} \left( {\sum\limits_{j = 1}^{N} {w_{j} } - M} \right). $$
(25)

Then, the necessary condition \(\frac{{\partial H_{2} }}{{\partial w_{k} }} = 0,\quad k = 1,2, \ldots ,N\) implies

$$ \frac{{\partial {\text{H}}_{2} }}{{\partial w_{k} }}{ = }\frac{{2\left| {c_{k} } \right|}}{{\left( {\sum\limits_{j = 1}^{N} {\left| {c_{j} } \right|^{2} } } \right)\left( {\sum\limits_{j = 1}^{N} {w_{j}^{2} } } \right)}}\left\{ {\sum\limits_{j = 1}^{N} {w_{j} \left| {c_{j} } \right|} - \frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha }} \right\} - \frac{{2w_{k} }}{{\left( {\sum\limits_{j = 1}^{N} {\left| {c_{j} } \right|^{2} } } \right)\left( {\sum\limits_{j = 1}^{N} {w_{j}^{2} } } \right)^{2} }}\left\{ {\sum\limits_{j = 1}^{N} {w_{j} \left| {c_{j} } \right|} - \frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha }} \right\}^{2} { + }\lambda_{2} = 0. $$

That is, the optimal solution for \(\lambda\) is

$$ \lambda_{2}^{*} = \frac{{2w_{k} }}{{\left( {\sum\limits_{j = 1}^{N} {\left| {c_{j} } \right|^{2} } } \right)\left( {\sum\limits_{j = 1}^{N} {w_{j}^{2} } } \right)^{2} }}\left\{ {\sum\limits_{j = 1}^{N} {w_{j} \left| {c_{j} } \right|} - \frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha }} \right\}^{2} - \frac{{2\left| {c_{k} } \right|}}{{\left( {\sum\limits_{j = 1}^{N} {\left| {c_{j} } \right|^{2} } } \right)\left( {\sum\limits_{j = 1}^{N} {w_{j}^{2} } } \right)}}\left\{ {\sum\limits_{j = 1}^{N} {w_{j} \left| {c_{j} } \right|} - \frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha }} \right\} $$

or

$$ \lambda_{2}^{*} { = }\frac{{2\left\{ {\sum\limits_{i = 1}^{N} {w_{j} \left| {c_{j} } \right|} - \frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha }} \right\}}}{{\left( {\sum\limits_{j = 1}^{N} {\left| {c_{j} } \right|^{2} } } \right)\left( {\sum\limits_{j = 1}^{N} {w_{j}^{2} } } \right)}}\left\{ {w_{k} \frac{{\sum\limits_{j = 1}^{N} {w_{j} \left| {c_{j} } \right|} - \frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha }}}{{\sum\limits_{j = 1}^{N} {w_{j}^{2} } }} - \left| {c_{k} } \right|} \right\},{\text{ for all }}k. $$

\({\text{If }}w_{k} \frac{{\sum\limits_{j = 1}^{N} {w_{j} \left| {c_{j} } \right|} - \frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha }}}{{\sum\limits_{j = 1}^{N} {w_{j}^{2} } }} - \left| {c_{k} } \right|\) is a constant for all \(k\); then, \(|c_{1} | = |c_{2} | = \cdots = |c_{N} |\). However, the case \(|c_{1} | = |c_{2} | = \cdots = |c_{N} |\) is not always true in DWT, respectively. Hence, we consider the other case

$$ \sum\limits_{j = 1}^{N} {w_{j} |c_{j} |} - \frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha } = 0{\text{with}}\sum\limits_{j = 1}^{N} {w_{j} } = M. $$
(26)

Since \(w_{N} = M - \sum\limits_{j = 1}^{N - 1} {w_{j} }\), we rewrite (26) as

$$ w_{1} \left| {c_{1} } \right| + w_{2} \left| {c_{2} } \right| + ... + \left( {M - \sum\limits_{j = 1}^{N - 1} {w_{j} } } \right)\left| {c_{N} } \right| - \frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha } = 0, $$
(27)

i.e.,

$$ (\left| {c_{1} } \right| - \left| {c_{N} } \right|)w_{1} + (\left| {c_{2} } \right| - \left| {c_{N} } \right|)w_{2} + ... + (\left| {c_{N - 1} } \right| - \left| {c_{N} } \right|)w_{N - 1} = \frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha } - M\left| {c_{N} } \right|. $$
(28)

Since \(N - 1\) unknowns are contained in one equation, infinitely many numbers of solutions are there to (28) and such equation should be resolved using the minimum-energy method. Assume

$$ \begin{gathered} {\mathbf{P}} = \left[ {\left| {c_{1} } \right| - \left| {c_{N} } \right|{\mkern 1mu} \quad \left| {c_{2} } \right| - \left| {c_{N} } \right|\quad \cdots \quad \left| {c_{N - 1} } \right| - \left| {c_{N} } \right|} \right], \hfill \\ {\mathbf{x}} = \left[ {w_{1} \quad w_{2} \quad \cdots \quad w_{N - 1} } \right]^{T} ,\qquad \hfill \\ b = \frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha } - M\left| {c_{N} } \right|, \hfill \\ \end{gathered} $$

then Eq. (28) can be expressed as \({\mathbf{Px}} = b\). The minimum-energy solution is given by \({\mathbf{x}}_{ + } = {\mathbf{P}}^{T} v\) where \(v\) satisfies \({\mathbf{PP}}^{T} v = b\). Through algebraic operations, we have

$$ v = \frac{{\frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha } - M\left| {c_{N} } \right|}}{{\sum\limits_{j = 1}^{N - 1} {\left( {\left| {c_{j} } \right| - \left| {c_{N} } \right|} \right)^{2} } }}{\text{and}}{\mathbf{x}}_{ + } = \left[ {\begin{array}{*{20}c} {\left| {c_{1} } \right| - \left| {c_{N} } \right|} \\ {\left| {c_{2} } \right| - \left| {c_{N} } \right|} \\ \vdots \\ {\left| {c_{N - 1} } \right| - \left| {c_{N} } \right|} \\ \end{array} } \right]\frac{{\frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha } - M\left| {c_{N} } \right|}}{{\sum\limits_{j = 1}^{N - 1} {\left( {\left| {c_{j} } \right| - \left| {c_{N} } \right|} \right)^{2} } }}. $$

Thus, the optimal solutions of weights are

$$ w_{j} = \frac{{\left| {c_{j} } \right| - \left| {c_{N} } \right|}}{{\sum\limits_{k = 1}^{N - 1} {\left( {\left| {c_{k} } \right| - \left| {c_{N} } \right|} \right)^{2} } }}\left[ {\frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha } - M\left| {c_{N} } \right|} \right],\quad j = 1,2, \ldots ,N - 1, \, $$
(29)

and

$$ w_{N} = M - \sum\limits_{j = 1}^{N - 1} {w_{j} } = \frac{{\sum\limits_{j = 1}^{N - 1} {\left( {\left| {c_{j} } \right| - \left| {c_{N} } \right|} \right)} \left[ {\frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha } - M\left| {c_{j} } \right|} \right]}}{{\sum\limits_{k = 1}^{N - 1} {\left( {\left| {c_{k} } \right| - \left| {c_{N} } \right|} \right)^{2} } }}. $$
(30)

Suppose that all \(w_{j}^{\prime } s\) in (29) and (30) are positive, existence of an optimal solution to the system of linear equations in (26) is guaranteed; if some \(w_{j}^{\prime } s\left[ {0,1} \right]\) are either negative or zero, an optimal solution does not exist and a near optimal solution will be searched instead. In the case of \(w_{k} \le 0{\text{ for some }}k\), which occurs when the signs of \(\left| {c_{k} } \right| - \left| {c_{N} } \right|\) and \(\frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha } - M\left| {c_{N} } \right|\) in (29) and (30) are opposite, we have

$$ \frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha } - M\left| {c_{N} } \right| = \frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha } - M\left| {c_{k} } \right| + M(\left| {c_{k} } \right| - \left| {c_{N} } \right|) $$

indicating either \({\raise0.7ex\hbox{${\frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha }}$} \!\mathord{\left/ {\vphantom {{\frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha }} M}}\right.\kern-0pt} \!\lower0.7ex\hbox{$M$}} < \left| {c_{N} } \right| < \left| {c_{k} } \right|or\left| {c_{k} } \right| < \left| {c_{N} } \right| < {\raise0.7ex\hbox{${\frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha }}$} \!\mathord{\left/ {\vphantom {{\frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha }} M}}\right.\kern-0pt} \!\lower0.7ex\hbox{$M$}}\) or holds.

Assume that \(sign(\left| {c_{j} } \right| - \left| {c_{N} } \right|) = sign(\frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha } - M\left| {c_{N} } \right|),{\text{ for }}1 \le j\not = k \le N\), then \(\left| {c_{k} } \right|\) is either the largest or smallest absolute DWT coefficients \({\mathbf{C}}_{N}\) depending on whether \({\raise0.7ex\hbox{${\frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha }}$} \!\mathord{\left/ {\vphantom {{\frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha }} M}}\right.\kern-0pt} \!\lower0.7ex\hbox{$M$}} < \left| {c_{N} } \right|{\text{or}}\left| {c_{N} } \right| < {\raise0.7ex\hbox{${\frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha }}$} \!\mathord{\left/ {\vphantom {{\frac{{(1 - \alpha )\gamma_{0} - \alpha \gamma_{1} }}{1 - 2\alpha }} M}}\right.\kern-0pt} \!\lower0.7ex\hbox{$M$}}\). In order not to discredit the SNR, the DWT coefficient term \(c_{k}\) needs to be un-scaled, namely \(w_{k} = 1\), and we turn to resolve (28) for the optimal solution with other \(N - 1\) weights. If more than one weights are nonnegative, we seek for the other weights to maximize the SNR and the optimization process will be performed iteratively.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, ST., Lu, HC. Optimization and Minimum-Energy Approaches for Private Message Security in the Wavelet Domain of Audio Signals. Circuits Syst Signal Process 42, 7194–7225 (2023). https://doi.org/10.1007/s00034-023-02419-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02419-x

Keywords

Navigation