Skip to main content
Log in

Latin Square and Machine Learning Techniques Combined Algorithm for Image Encryption

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Multimedia data is crucial in the military, medical, forensics, social, etc., to transmit a large amount of data. Security of this sensitive information is the primary issue. This paper uses Latin square and machine learning techniques such as neural networks and genetic algorithm to design an image encryption algorithm. A new neural network-based pseudorandom number generator is proposed to generate a chaotic sequence for various applications. Encryption key images are designed using Latin squares in the finite field. Further, the Latin squares are XOR with the input matrix to get the encrypted images. The proposed algorithm is iterated a finite number of times to generate a cipher image population. Randomly two parents are chosen from the generated population, and row and column arrangements produce offspring. A genetic algorithm is the optimization technique used for the best encrypted image search. The pixel correlation value serves as a fitness function. Finally, the least correlated cipher image is obtained from the genetic algorithm applied to the parent and offspring of the population generated from the encryption algorithm. The simulation results from the proposed image encryption model surpass many communication channel attacks and perform better when compared to existing image security algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. P.A.-N. Agbedemnab, E.Y. Baagyere, M.I. Daabo, A New Image Encryption and Decryption Technique using Genetic Algorithm and Residual Numbers, in 2019 IEEE AFRICON, pp. 1–9 (2019). https://doi.org/10.1109/AFRICON46755.2019.9133919

  2. T.S. Ali, R. Ali, A new chaos based color image encryption algorithm using permutation substitution and Boolean operation. Multimed. Tools Appl. 79, 19853–19873 (2020). https://doi.org/10.1007/s11042-020-08850-5

    Article  Google Scholar 

  3. H. Aparna, B. Bhumijaa, R. Santhiyadevi, K. Vaishanavi, M. Sathanarayanan, A. Rengarajan, P. Praveenkumar, A.A. Abd El-Latif, Double layered Fridrich structure to conserve medical data privacy using quantum cryptosystem. J. Inf. Secur. Appl. 63, 102972 (2021). https://doi.org/10.1016/j.jisa.2021.102972

    Article  Google Scholar 

  4. M. Balaji, V.R. Vijaykumar, K. Subramaniam, M. Kannan, V.A. Pillai, Vlsi implementation of optimized 2d SIMM chaotic map for image encryption. Intell. Autom. Soft Comput. 35(3), 3155–3168 (2023). https://doi.org/10.32604/iasc.2023.028969

    Article  Google Scholar 

  5. X. Chai, J. Zhang, Z. Gan et al., Medical image encryption algorithm based on Latin square and memristive chaotic system. Multimed. Tools Appl. 78, 35419–35453 (2019)

    Article  Google Scholar 

  6. X. Chai, X. Zhi, Z. Gan, Y. Zhang, Y. Chen, F. Jiangyu, Combining improved genetic algorithm and matrix semi-tensor product (STP) in color image encryption. Signal Process. 183, 108041 (2021). https://doi.org/10.1016/j.sigpro.2021.108041

    Article  Google Scholar 

  7. V.R. Folifack Signing, T. Fozin Fonzin, M. Kountchou et al., Chaotic jerk system with hump structure for text and image encryption using DNA coding. Circuits Syst. Signal Process. 40, 4370–4406 (2021). https://doi.org/10.1007/s00034-021-01665-1

    Article  Google Scholar 

  8. G. Ghosh, Kavita, D. Anand, S. Verma, D.B. Rawat, J. Shafi, Z. Marszałek, M. Woźniak, Secure surveillance systems using partial-regeneration-based non-dominated optimization and 5D-chaotic map. Symmetry 13(8), 1447 (2021). https://doi.org/10.3390/sym13081447

    Article  Google Scholar 

  9. J.H. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press, Ann Arbor, Michigan, 1975). Re-issued by MIT Press (1992)

  10. H.T. Hu, T.T. Lee, Robust complementary dual image watermarking in subbands derived from the Laplacian pyramid, discrete wavelet transform, and directional filter bank. Circuits Syst. Signal Process. 41, 4090–4116 (2022). https://doi.org/10.1007/s00034-022-01975-y

    Article  Google Scholar 

  11. Z. Hua, Z. Zhu, Y. Chen et al., Color image encryption using orthogonal Latin squares and a new 2D chaotic system. Nonlinear Dyn. 104, 4505–4522 (2021). https://doi.org/10.1007/s11071-021-06472-6

    Article  Google Scholar 

  12. H.C. Huang, J.S. Pan, Y.H. Huang et al., Progressive watermarking techniques using genetic algorithms. Circuits Syst. Signal Process. 26, 671–687 (2007). https://doi.org/10.1007/s00034-006-0104-z

    Article  MATH  Google Scholar 

  13. https://ccia.ugr.es/cvg/dbimagenes/g256.php. Accessed 14 Aug 2022

  14. N. Khan, P. Muthukumar, Transient Chaos, synchronization and digital image enhancement technique based on a novel 5D fractional-order hyperchaotic memristive system. Circuits Syst. Signal Process. 41, 2266–2289 (2022). https://doi.org/10.1007/s00034-021-01892-6

    Article  MATH  Google Scholar 

  15. J. Li, L. Chen, W. Cai, J. Xiao, J. Zhu, H. Yihua, K. Wen, Holographic encryption algorithm based on bit-plane decomposition and hyperchaotic Lorenz system. Opt. Laser Technol. 152, 108127 (2022). https://doi.org/10.1016/j.optlastec.2022.108127

    Article  Google Scholar 

  16. M.A. Lone, S. Qureshi, RGB image encryption based on symmetric keys using Arnold transform, 3D chaotic map and affine hill cipher. Optik 260, 168880 (2022). https://doi.org/10.1016/j.ijleo.2022.168880

    Article  Google Scholar 

  17. X. Ming, Z. Tian, A novel image encryption algorithm based on self-orthogonal Latin squares. Optik 171, 891–903 (2018). https://doi.org/10.1016/j.ijleo.2018.06.112

    Article  Google Scholar 

  18. S. Mozaffari, Parallel image encryption with bitplane decomposition and genetic algorithm. Multimed. Tools Appl. 77, 25799–25819 (2018). https://doi.org/10.1007/s11042-018-5817-8

    Article  Google Scholar 

  19. Y. Niu, Z. Zhou, X. Zhang, An image encryption approach based on chaotic maps and genetic operations. Multimed. Tools Appl. 79, 25613–25633 (2020). https://doi.org/10.1007/s11042-020-09237-2

    Article  Google Scholar 

  20. S. Noshadian, A. Ebrahimzade, S.J. Kazemitabar, Breaking a chaotic image encryption algorithm. Multimed. Tools Appl. 79, 25635–25655 (2020). https://doi.org/10.1007/s11042-020-09233-6

    Article  Google Scholar 

  21. S. Patel, V. Thanikaiselvan, D. Pelusi et al., Colour image encryption based on customized neural network and DNA encoding. Neural Comput. Appl. 33, 14533–14550 (2021). https://doi.org/10.1007/s00521-021-06096-2

    Article  Google Scholar 

  22. S. Patel, T. Veeramalai, Image encryption using a spectrally efficient Halton logistics tent (HaLT) map and DNA encoding for secured image communication. Entropy (Basel) 24(6), 803 (2022). https://doi.org/10.3390/e24060803

    Article  MathSciNet  Google Scholar 

  23. S.K. Pujari, G. Bhattacharjee, S. Bhoi, A hybridized model for image encryption through genetic algorithm and DNA sequence. Procedia Comput. Sci. 125, 165–171 (2018). https://doi.org/10.1016/j.procs.2017.12.023

    Article  Google Scholar 

  24. D. Rachmawati, J.T. Tarigan, A.B.C. Ginting, A comparative study of message digest 5({MD}5) and {SHA}256 algorithm. J. Phys. Conf. Ser. 978(1), 012116 (2018). https://doi.org/10.1088/1742-6596/978/1/012116

    Article  Google Scholar 

  25. D. Ravichandran, P. Praveenkumar, J.B.B. Rayappan, R. Amirtharajan, Chaos based crossover and mutation for securing DICOM image. Comput. Biol. Med. 72, 170–184 (2016). https://doi.org/10.1016/j.compbiomed.2016.03.020

    Article  Google Scholar 

  26. A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, A statistical test suite for random and pseudorandom number generators for cryptographic applications. Booz-allen and hamilton inc mclean va (2001)

  27. C.E. Shannon, Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949). https://doi.org/10.1002/j.1538-7305.1949.tb00928.x

    Article  MathSciNet  MATH  Google Scholar 

  28. H. Shen, X. Shan, Z. Tian, A new chaotic image encryption algorithm based on transversals in a Latin square (2022). arXiv preprint arXiv:2202.12559. https://doi.org/10.48550/arXiv.2202.12559

  29. A. Sridevi, R. Sivaraman, V. Balasubramaniam et al., On Chaos based duo confusion duo diffusion for colour images. Multimed. Tools Appl. 81, 16987–17014 (2022). https://doi.org/10.1007/s11042-022-12471-5

    Article  Google Scholar 

  30. W. Stallings, Cryptography and Network Security: Principles and Practice, 5th edn. (Prentice Hall, 2010)

    Google Scholar 

  31. L. Teng, X. Wang, Y. Xian, Image encryption algorithm based on a 2D-CLSS hyperchaotic map using simultaneous permutation and diffusion. Inf. Sci. 605, 71–85 (2022). https://doi.org/10.1016/j.ins.2022.05.032

    Article  Google Scholar 

  32. H.R. Vanamala, D. Nandur, Genetic Algorithm and Chaotic Maps Based Visually Meaningful Image Encryption, TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON), pp. 892–896 (2019). https://doi.org/10.1109/TENCON.2019.8929469.

  33. X. Wang, Y. Su, M. Xu et al., A new image encryption algorithm based on Latin square matrix. Nonlinear Dyn. 107, 1277–1293 (2022). https://doi.org/10.1007/s11071-021-07017-7

    Article  Google Scholar 

  34. Y. Wu, J.P. Noonan, S. Agaian, NPCR and UACI randomness tests for image encryption. Cyber J. Multidiscip. J. Sci. Technol. J. Sel. Areas Telecommun. (JSAT) 1(2), 31–38 (2011)

    Google Scholar 

  35. G. Ye, W. Huishan, M. Liu, Y. Shi, Image encryption scheme based on blind signature and an improved Lorenz system. Expert Syst. Appl. 205, 117709 (2022). https://doi.org/10.1016/j.eswa.2022.117709

    Article  Google Scholar 

  36. X. Zhang, T. Wu, Y. Wang, L. Jiang, Y. Niu, A novel chaotic image encryption algorithm based on latin square and random shift. Comput. Intell. Neurosci. (2021). https://doi.org/10.1155/2021/2091053

    Article  Google Scholar 

  37. Y. Zhang, H. Xie, J. Sun, H. Zhang, An efficient multi-level encryption scheme for stereoscopic medical images based on coupled chaotic system and Otsu threshold segmentation. Comput. Biol. Med. 146, 105542 (2022). https://doi.org/10.1016/j.compbiomed.2022.105542

    Article  Google Scholar 

  38. F. Zhang, X. Zhang, M. Cao, F. Ma, Z. Li, Characteristic analysis of 2D lag-complex logistic map and its application in image encryption. IEEE Multimed. 28(4), 96–106 (2021). https://doi.org/10.1109/MMUL.2021.3080579

    Article  Google Scholar 

  39. K.S. Zigangirov, Theory of Code Division Multiple Access Communication (Wiley, 2004)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Thanikaiselvan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S., Thanikaiselvan, V. Latin Square and Machine Learning Techniques Combined Algorithm for Image Encryption. Circuits Syst Signal Process 42, 6829–6853 (2023). https://doi.org/10.1007/s00034-023-02427-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02427-x

Keywords

Navigation