Skip to main content
Log in

Robust Adaptive Beamforming via Virtual Interpolation-Based Atomic Norm Minimization

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The interpolation concept can fill the holes in the difference coarray of nonuniform linear arrays (NLAs), thus ensuring effective enhancement of the degrees of freedom and expansion of the array aperture. However, compared to interpolation-based direction of arrival (DOA) estimation techniques, the application of interpolation to beamforming approaches has not been universally investigated. In this study, two robust adaptive beamforming algorithms are proposed. First, the observed data is interpolated and the signal of interest (SOI) is subtracted. Second, the vector completion problem of the received data associated with the derived virtual array is formulated, which can be implemented with the utilization of atomic norm minimization. Unlike previous algorithms, the proposed method obtains the interference plus noise covariance matrix (INCM) and the DOA of the SOI by solving the vector completion problem rather than matrix completion. Thereafter, this problem is solved iteratively in two convex steps, whose closed-form expressions for the alternating direction method of multipliers are derived to enhance computational efficiency. The first proposed algorithm calculates the weight vector using rows corresponding to the physical sensor locations of the INCM. The second one fills the gaps of NLAs using the virtual filling technique to form a consecutive array and directly applies the resulting INCM to compute the weight vector. Numerical simulations demonstrate the superior overall performance of the two proposed methods under nonideal scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. D.A. Abraham, Underwater acoustic signal processing (Springer, Berlin, 2019), pp. 621–741. https://doi.org/doi.org/10.1007/978-3-319-92983-5_9.

    Book  Google Scholar 

  2. M. Bekrani, A. H. T. Nguyen, A. W. H. Khong, An adaptive non-linear process for under-determined virtual microphone beamforming, 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 4495–4499 (2021).

  3. B.N. Bhaskar, G. Tang, B. Recht, Atomic norm denoising with applications to line pectral estimation. IEEE Trans. Signal Process. 61(23), 5987–5999 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Capon, High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE 57(8), 1408–1418 (1969)

    Article  Google Scholar 

  5. P. Chen, Z. Chen, P. Miao, et al., RIS-ADMM: an ADMM-based passive and sparse sensing method with interference removal, arXiv preprint arXiv:2206.06172 (2022)

  6. P. Chen, Y. Yang, Y. Wang et al., Adaptive beamforming with sensor position errors using covariance matrix construction based on subspace bases transition. IEEE Signal Process. Lett. 26(1), 19–23 (2019)

    Article  Google Scholar 

  7. Y. Cheng, X. Zhang, T. Liu et al., Coprime array-adaptive beamforming via atomic-norm-based sparse recovery. IET Radar Sonar Navig. 15(11), 1494–1507 (2021)

    Article  Google Scholar 

  8. Y. Chu, Z. Wei, Z. Yang, New reweighted atomic norm minimization approach for line spectral estimation. Signal Process. 206, 108897 (2023)

    Article  Google Scholar 

  9. Y. Du, H. Xu, W. Cui et al., Adaptive beamforming algorithm for coprime array based on interference and noise covariance matrix reconstruction. IET Radar Sonar Navig. 16(4), 668–677 (2022)

    Article  Google Scholar 

  10. B. Feng, D.C. Jenn, Grating lobe suppression for distributed digital subarrays using virtual filling. IEEE Antennas Wirel. Propag. Lett. 12, 1323–1326 (2013)

    Article  Google Scholar 

  11. Q. Ge, Y. Zhang, Z. Feng et al., Novel robust adaptive beamformer in the presence of gain-phase errors. Circuits Syst. Signal Process. 40, 1926–1947 (2021)

    Article  Google Scholar 

  12. M. Grant, S. Boyd, Y. Ye, CVX: Matlab software for disciplined convex program-ming, version 2.1 [Online]. Available: http://cvxr.com/cvx, (2017).

  13. Y. Gu, C. Zhou, N. A. Goodman, et al., Coprime array adaptive beamforming based on compressive sensing virtual array signal, in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2981–2985 (2016).

  14. J. He, T. Shu, V. Dakulagi et al., Simultaneous interference localization and array calibration for robust adaptive beamforming with partly calibrated arrays. IEEE Trans. Aerosp. Electron. Syst. 57(5), 2850–2863 (2021)

    Article  Google Scholar 

  15. F. Huang, W. Sheng, X. Ma, Modified projection approach for robust adaptive array beamforming. Signal Process. 92(7), 1758–1763 (2012)

    Article  Google Scholar 

  16. Y. Huang, M. Zhou, S.A. Vorobyov, New designs on MVDR robust adaptive beamforming based on optimal steering vector estimation. IEEE Trans. Signal Process. 67(14), 3624–3638 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. Ke, C. Zheng, R. Peng et al., Robust adaptive beamforming using noise reduction preprocessing-based fully automatic diagonal and steering vector estimation. IEEE Access 5, 12974–12987 (2017)

    Article  Google Scholar 

  18. Y. Li, Y. Chi, Off-the-grid line spectrum denoising and estimation with multiple measurement vectors. IEEE Trans. Signal Process. 64(5), 1257–1269 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. K. Liu, Y.D. Zhang, Coprime array-based robust beamforming using covariance matrix reconstruction technique. IET Commun. 12(17), 2206–2212 (2018)

    Article  MathSciNet  Google Scholar 

  20. S. Liu, J. Zhao, Y. Zhang et al., 2D DOA estimation algorithm by nested acoustic vector-sensor array. Circuits Syst. Signal Process. 41, 1115–1130 (2021)

    Article  Google Scholar 

  21. J. Lu, J. Yang, B. Hou et al., Virtual reconstruction-based robust adaptive beamforming for distributed digital subarray antennas. Int. J. Antennas Propag. 2021, 6649439 (2021)

    Article  Google Scholar 

  22. Y. Lv, F. Cao, F. Wu et al., Robust adaptive beamforming based on covariance matrix reconstruction using Gauss-Legendre quadrature and steering vector estimation. EURASIP J. Adv. Signal Process. 9, 1–20 (2023)

    Google Scholar 

  23. Y. Lv, C. He, F. Cao et al., Interleaved arrays with second-order difference coarray generation for mutual coupling reduction. Circuits Syst. Signal Process. 2023, 1–29 (2023)

    Google Scholar 

  24. H. Qiao, P. Pal, Gridless line spectrum estimation and low-rank Toeplitz matrix compression using structured samplers: A regularization-free approach. IEEE Trans. Signal Process. 65(9), 2221–2236 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. G. Tang, B.N. Bhaskar, P. Shah et al., Compressed sensing off the grid. IEEE Trans. Information Theory 59(11), 7465–7490 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. P.P. Vaidyanathan, P. Pal, Sparse sensing with co-prime samplers and arrays. IEEE Trans. Signal Process. 59(2), 573–586 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. S.A. Vorobyov, A.B. Gershman, Z. Luo, Robust adaptive beamforming using worst-case performance optimisation: a solution to the signal mismatch problem. IEEE Trans. Signal Process. 51(2), 313–324 (2003)

    Article  Google Scholar 

  28. J. Xu, G. Liao, L. Huang et al., Robust adaptive beamforming for fast-moving target detection with FDA-STAP radar. IEEE Trans. Signal Process. 65(4), 973–984 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Xu, G. Liao, S. Zhu et al., Response vector constrained robust LCMV beamforming based on semidefinite programming. IEEE Trans. Signal Process. 63(21), 5720–5732 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. X. Yang, Y. Li, F. Liu et al., Robust adaptive beamforming based on covariance matrix reconstruction with annular uncertainty set and vector space projection. IEEE Antennas Wirel. Propag. Lett. 20(2), 130–134 (2020)

    Article  Google Scholar 

  31. J. Yang, G. Liao, J. Li, Robust adaptive beamforming in nested array. Signal Process. 114, 143–149 (2015)

    Article  Google Scholar 

  32. L. Yu, Y. Wei, W. Liu, Adaptive beamforming based on nonuniform linear arrays with enhanced degrees of freedom, TENCON-2015 IEEE Region 10 Conference, 1–5 (2015).

  33. X. Yuan, L. Gan, Robust adaptive beamforming via a novel subspace method for interference covariance matrix reconstruction. Signal Process. 130, 233–242 (2017)

    Article  Google Scholar 

  34. X. Zhang, W. Jiang, K. Huo et al., Robust adaptive beamforming based on linearly modified atomic-norm minimization with target contaminated data. IEEE Trans. Signal Process. 68, 5138–5151 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Z. Zheng, Y. Huang, W. Wang et al., Augmented covariance matrix reconstruction for DOA estimation using difference coarray. IEEE Trans. Signal Process. 69, 5345–5358 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Z. Zheng, T. Yang, D. Jiang et al., Robust and efficient adaptive beamforming using nested subarray principles. IEEE Access 8, 4076–4085 (2019)

    Article  Google Scholar 

  37. Z. Zheng, T. Yang, W. Wang et al., Robust adaptive beamforming via coprime coarray interpolation. Signal Process. 169, 107382 (2020)

    Article  Google Scholar 

  38. Z. Zheng, Y. Zheng, W. Wang et al., Covariance matrix reconstruction with interference steering vector and power estimation for robust adaptive beamforming. IEEE Trans. Veh. Technol. 67(9), 8495–8503 (2018)

    Article  Google Scholar 

  39. C. Zhou, Y. Gu, X. Fan et al., Direction-of-arrival estimation for coprime array via virtual array interpolation. IEEE Trans. Signal Process. 66(22), 5956–5971 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. C. Zhou, Y. Gu, S. He et al., A robust and efficient algorithm for coprime array adaptive beamforming. IEEE Trans. Veh. Technol. 67(2), 1099–1112 (2018)

    Article  Google Scholar 

  41. C. Zhou, Z. Shi, Y. Gu, Coprime array adaptive beamforming with enhanced degrees-of-freedom capability, in Proc. IEEE Radar Conference (RadarConf), 1357–1361 (2017).

Download references

Acknowledgements

The work has been supported partly by the National Natural Science Foundation of China (Grant nos. 62071481, 61903375, and 61773389), Natural Science Foundation of Shaanxi Province (2021KJXX-22, 2020JQ-298), Post-doctoral Science Foundation of China (2019M663635), and Special Support Plan for High-level Talents in Shaanxi Province (TZ0328).

Author information

Authors and Affiliations

Authors

Contributions

YL: Writing and methodology. FC: Supervision and software. CH: Review. WZ: Review. JX: Review. JY: Review.

Corresponding author

Correspondence to Fei Cao.

Ethics declarations

Conflict of interest

All data generated or analysed during this study are included in this published article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

First, we substitute \({\mathbf{y}} - p_{0} {\mathbf{b}}_{0}\) into the left side of (18), it gains

$$ \begin{gathered} \tau ({\mathbf{y}}_{q} ) = \tau ({\mathbf{y}} - p_{0} {\mathbf{b}}_{0} ) = \tau ({\mathbf{y}}) - p_{0} \tau ({\mathbf{b}}_{0} ) = \sum\limits_{q = 1}^{Q} {p_{q} \tau ({\mathbf{b}}_{q} )} \hfill \\ = p_{1} \left[ {\begin{array}{*{20}l} 1 \hfill & {\quad e^{{ - j\pi \sin \theta_{1} }} } \hfill & {\quad \cdots } \hfill & {\quad e^{{ - j\pi (L - 1)\sin \theta_{1} }} } \hfill \\ {e^{{j\pi \sin \theta_{1} }} } \hfill & {\quad 1} \hfill & \quad \hfill & \quad \hfill \\ \vdots \hfill & \quad \hfill & {\quad \ddots } \hfill & {\quad \vdots } \hfill \\ {e^{{j\pi (L - 1)\sin \theta_{1} }} } \hfill & \quad \hfill & {\quad \cdots } \hfill & {\quad 1} \hfill \\ \end{array} } \right] + \cdots \hfill\\ + p_{Q} \left[ {\begin{array}{*{20}l} 1 \hfill & {\quad e^{{ - j\pi \sin \theta_{Q} }} } \hfill & {\quad \cdots } \hfill & {\quad e^{{ - j\pi (L - 1)\sin \theta_{Q} }} } \hfill \\ {e^{{j\pi \sin \theta_{Q} }} } \hfill & {\quad 1} \hfill & \quad \hfill & \quad \hfill \\ \vdots \hfill & \quad \hfill & {\quad \ddots } \hfill & {\quad \vdots } \hfill \\ {e^{{j\pi (L - 1)\sin \theta_{Q} }} } \hfill & \quad \hfill & {\quad \cdots } \hfill & {\quad 1} \hfill \\ \end{array} } \right] \hfill \\ \end{gathered} $$
(40)

Analyzing the \(q\)-th term in (40), we get

$$\begin{aligned}& p_{q} \left[ {\begin{array}{*{20}c} 1 & {e^{{ - j\pi \sin \theta_{q} }} } & \cdots & {e^{{ - j\pi (L - 1)\sin \theta_{q} }} } \\ {e^{{j\pi \sin \theta_{q} }} } & 1 & {} & {} \\ \vdots & {} & \ddots & \vdots \\ {e^{{j\pi (L - 1)\sin \theta_{q} }} } & {} & \cdots & 1 \\ \end{array} } \right]\\ & \quad = p_{q} \left[ {\begin{array}{*{20}c} 1 \\ {e^{{j\pi \sin \theta_{q} }} } \\ \vdots \\ {e^{{j\pi (L - 1)\sin \theta_{q} }} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} 1 & { \, e^{{ - j\pi \sin \theta_{q} }} \, } & { \cdots \, } & {e^{{ - j\pi (L - 1)\sin \theta_{q} }} } \\ \end{array} } \right] = p_{q} {\mathbf{b}}_{q} {\mathbf{b}}_{q}^{\text{H}}\end{aligned} $$
(41)

Therefore, the following formula is derived:

$$ \tau ({\mathbf{y}}_{q} ) = p_{1} {\mathbf{b}}_{1} {\mathbf{b}}_{1}^{\text{H}} + p_{2} {\mathbf{b}}_{2} {\mathbf{b}}_{2}^{\text{H}} + \cdots + p_{Q} {\mathbf{b}}_{Q} {\mathbf{b}}_{Q}^{\text{H}} = \sum\limits_{q = 1}^{Q} {p_{q} {\mathbf{b}}_{q} {\mathbf{b}}_{q}^{\text{H}} } $$
(42)

This completes the proof.

Appendix B

For \({\mathbf{y}}^{i + 1}\), let

$$ \begin{aligned} \nabla_{{\mathbf{y}}} \Gamma \left( {{\mathbf{y}},p_{0}^{i} ,{\mathbf{u}}^{i} ,t^{i} ,{\mathbf{Z}}^{i} ,{\mathbf{F}}^{i} } \right) &= \nabla_{{\mathbf{y}}} \left\| {{\mathbf{y}} \oplus {\mathbf{g}} - {\mathbf{r}}_{I} } \right\|_{2}^{2} \\ & \quad + \nabla_{{\mathbf{y}}} \left\langle {{\mathbf{F}}^{i} ,{\mathbf{Z}}^{i} - \left[ {\begin{array}{*{20}l} {\tau ({\mathbf{u}}^{i} )} \hfill & {\quad {\mathbf{y}} - p_{0}^{i} {\hat{\mathbf{b}}}_{0} } \hfill \\ {\left( {{\mathbf{y}} - p_{0}^{i} {\hat{\mathbf{b}}}_{0} } \right)^{\text{H}} } \hfill & {\quad t^{i} } \hfill \\ \end{array} } \right]} \right\rangle \hfill \\ &\quad + \nabla_{{\mathbf{y}}} \rho \left\| {{\mathbf{Z}}^{i} - \left[ {\begin{array}{*{20}l} {\tau ({\mathbf{u}}^{i} )} \hfill & {\quad {\mathbf{y}} - p_{0}^{i} {\hat{\mathbf{b}}}_{0} } \hfill \\ {\left( {{\mathbf{y}} - p_{0}^{i} {\hat{\mathbf{b}}}_{0} } \right)^{\text{H}} } \hfill & {\quad t^{i} } \hfill \\ \end{array} } \right]} \right\|_{\text{F}}^{2} \hfill \\ &\quad = {\mathbf{y}} \oplus {\mathbf{g}} - {\mathbf{r}}_{I} - {\mathbf{f}}_{12}^{i} + 2\rho {\mathbf{y}} - 2\rho {\mathbf{z}}_{12}^{i} - 2\rho p_{0}^{i} {\hat{\mathbf{b}}}_{0} = 0 \hfill \\ \end{aligned} $$
(43)

where \({\mathbf{Z}}^{i} = \left[ {\begin{array}{*{20}l} {{\mathbf{Z}}_{11}^{i} } \hfill & {\quad {\mathbf{z}}_{12}^{i} } \hfill \\ {{\mathbf{z}}_{21}^{i} } \hfill & {\quad z_{22}^{i} } \hfill \\ \end{array} } \right]\), \({\mathbf{z}}_{12}^{i} = {\mathbf{z}}_{21}^{{i,{\text{H}} }}\), \({\mathbf{F}}^{i} = \left[ {\begin{array}{*{20}c} {{\mathbf{F}}_{11}^{i} } & {\quad {\mathbf{f}}_{12}^{i} } \\ {{\mathbf{f}}_{21}^{i} } & {\quad f_{22}^{i} } \\ \end{array} } \right]\), and \({\mathbf{f}}_{12}^{i} = {\mathbf{f}}_{21}^{{i,{\text{H}} }}\). Subsequently, the update form for \({\mathbf{y}}^{i + 1}\) is calculated as

$$ {\mathbf{y}}^{i + 1} = \frac{1}{{2\rho + {\mathbf{g}}}} \oplus ({\mathbf{r}}_{I} + {\mathbf{f}}_{12}^{i} + 2\rho {\mathbf{z}}_{12}^{i} + 2\rho p_{0}^{i} {\hat{\mathbf{b}}}_{0} ) $$
(44)

In the case of \(p_{0}^{i + 1}\), we make

$$ \begin{aligned} &\nabla _{{p_{0} }} \Gamma \left( {{\mathbf{y}}^{{i + 1}} ,p_{0} ,{\mathbf{u}}^{i} ,t^{i} ,{\mathbf{Z}}^{i} ,{\mathbf{F}}^{i} } \right) \\ &\quad = \nabla _{{p_{0} }} \left\langle {{\mathbf{F}}^{i} ,{\mathbf{Z}}^{i} - \left[ {\begin{array}{*{20}c} {\tau ({\mathbf{u}}^{i} )} & {{\mathbf{y}}^{{i + 1}} - p_{0} {\boldsymbol{\hat{b}}}_{0} } \\ {({\mathbf{y}}^{{i + 1}} - p_{0} {\boldsymbol{\hat{b}}}_{0} )^{\text{H} } } & {t^{i} } \\ \end{array} } \right]} \right\rangle \\ & \qquad + \nabla _{{p_{0} }} \rho \left\| {{\mathbf{Z}}^{i} - \left[ {\begin{array}{*{20}c} {\tau ({\mathbf{u}}^{i} )} & {{\mathbf{y}}^{{i + 1}} - p_{0} {\boldsymbol{\hat{b}}}_{0} } \\ {({\boldsymbol{y}}^{{i + 1}} - p_{0} {\boldsymbol{\hat{b}}}_{0} )^{\text{H} } } & {t^{i} } \\ \end{array} } \right]} \right\|_{\text{F} }^{2} \\ & \quad = {\boldsymbol{\hat{b}}}_{0}^{\text{H} } {\mathbf{f}}_{{12}}^{i} + 2\rho {\boldsymbol{\hat{b}}}_{0}^{\text{H} } ({\mathbf{z}}_{{12}}^{i} - {\mathbf{y}}^{{i + 1}} + p_{0} {\boldsymbol{\hat{b}}}_{0} ) = 0 \\ \end{aligned} $$
(45)

The closed form for \(p_{0}^{i + 1}\) is yielded:

$$ p_{0}^{i + 1} = \tfrac{1}{{\left\| {{\hat{\mathbf{b}}}_{0} } \right\|_{2}^{2} }}{\hat{\mathbf{b}}}_{0}^{\text{H}} \left( {{\mathbf{y}}^{i + 1} - {\mathbf{z}}_{12}^{i} - \tfrac{1}{2\rho }{\mathbf{f}}_{12}^{i} } \right) $$
(46)

For \({\mathbf{u}}^{i + 1}\), let

$$ \begin{aligned} & \nabla _{{\mathbf{u}}} \Gamma \left( {{\mathbf{y}}^{{i + 1}} ,p_{0}^{{i + 1}} ,{\mathbf{u}},t^{i} ,{\mathbf{Z}}^{i} ,{\mathbf{F}}^{i} } \right) = \nabla _{{\mathbf{u}}} \frac{\mu }{2}\left\{ {\frac{1}{L}\text{Tr} \left( {\tau ({\mathbf{u}})} \right) + t^{i} } \right\} \\ & \qquad + \nabla _{{\mathbf{u}}} \left\langle {{\mathbf{F}}^{i} ,{\mathbf{Z}}^{i} - \left[ {\begin{array}{*{20}l} {\tau ({\mathbf{u}})} \hfill & {\quad {\mathbf{y}}^{{i + 1}} - p_{0}^{{i + 1}} {\boldsymbol{\hat{b}}}_{0} } \hfill \\ {({\mathbf{y}}^{{i + 1}} - p_{0}^{{i + 1}} {\boldsymbol{\hat{b}}}_{0} )^{\text{H} } } \hfill & {\quad t^{i} } \hfill \\ \end{array} } \right]} \right\rangle + \nabla _{{\mathbf{u}}} \rho \left\| {{\mathbf{Z}}^{i} - \left[ {\begin{array}{*{20}l} {\tau ({\mathbf{u}})} \hfill & {\quad {\mathbf{y}}^{{i + 1}} - p_{0}^{{i + 1}} {\boldsymbol{\hat{b}}}_{0} } \hfill \\ {({\mathbf{y}}^{{i + 1}} - p_{0}^{{i + 1}} {\boldsymbol{\hat{b}}}_{0} )^{\text{H} } } \hfill & {\quad t^{i} } \hfill \\ \end{array} } \right]} \right\|_{\text{F} }^{2} = 0 \\ \end{aligned} $$
(47)

The l-th entry of \({\mathbf{u}}^{i + 1}\) is derived as

$$ {\mathbf{u}}_{(l)}^{i + 1} = \frac{1}{2\rho (L - l + 1)}\left\{ {{\text{Tr}} \left( {{\mathbf{F}}_{11}^{i} ,l} \right) + 2\rho {\text{Tr}} \left( {{\mathbf{Z}}_{11}^{i} ,l} \right) - \mu {\mathbf{e}}_{1} - 2\rho {\mathbf{e}}_{1} {\text{Tr}} \left( {{\mathbf{Z}}_{11}^{i} ,l} \right)} \right\},l = 1,2, \ldots ,L $$
(48)

Here, \({\text{Tr}} \left( {{\mathbf{X}},l} \right) = \sum\nolimits_{\chi } {X_{l + \chi - 1, \, \chi } } ,\chi = 1,2, \ldots ,L - l + 1\) and \({\mathbf{e}}_{1}\) stands for a zero vector, except that its first entry is 1.

In the case of \(t^{i + 1}\), we make

$$ \begin{gathered} \nabla_{t} \Gamma \left( {{\mathbf{y}}^{i + 1} ,p_{0}^{i + 1} ,{\mathbf{u}}^{i + 1} ,t,{\mathbf{Z}}^{i} ,{\mathbf{F}}^{i} } \right) = \nabla_{t} \frac{\mu }{2}\left\{ {\frac{1}{L}{\text{Tr}} \left( {\tau ({\mathbf{u}}^{i + 1} )} \right) + t} \right\} \hfill \\ + \nabla_{t} \left\langle {{\mathbf{F}}^{i} ,{\mathbf{Z}}^{i} - \left[ {\begin{array}{*{20}l} {\tau ({\mathbf{u}}^{i + 1} )} \hfill & {\quad {\mathbf{y}}^{i + 1} - p_{0}^{i + 1} {\hat{\mathbf{b}}}_{0} } \hfill \\ {({\mathbf{y}}^{i + 1} - p_{0}^{i + 1} {\hat{\mathbf{b}}}_{0} )^{\text{H}} } \hfill & {\quad t} \hfill \\ \end{array} } \right]} \right\rangle \\ \qquad + \nabla_{t} \rho \left\| {{\mathbf{Z}}^{i} - \left[ {\begin{array}{*{20}l} {\tau ({\mathbf{u}}^{i + 1} )} \hfill & {\quad {\mathbf{y}}^{i + 1} - p_{0}^{i + 1} {\hat{\mathbf{b}}}_{0} } \hfill \\ {({\mathbf{y}}^{i + 1} - p_{0}^{i + 1} {\hat{\mathbf{b}}}_{0} )^{\text{H}} } \hfill & {\quad t} \hfill \\ \end{array} } \right]} \right\|_{\text{F}}^{2} \hfill \\ = \frac{\mu }{2} - f_{22}^{i} + 2\rho (t - z_{22}^{i} ) = 0 \hfill \\ \end{gathered} $$
(49)

Therefore, we update \(t^{i + 1}\) as

$$ t^{i + 1} = z_{22}^{i} + \frac{1}{2\rho }f_{22}^{i} - \frac{\mu }{4\rho } $$
(50)

For \({\mathbf{Z}}^{i + 1}\), it can be formulated as

$$ \begin{aligned} {\mathbf{Z}}^{i + 1} &= \mathop {\arg \min }\limits_{{{\mathbf{Z}} \ge 0}} \Gamma \left( {{\mathbf{y}}^{i + 1} ,p_{0}^{i + 1} ,{\mathbf{u}}^{i + 1} ,t^{i + 1} ,{\mathbf{Z}},{\mathbf{F}}^{i} } \right) \\ &= \mathop {\arg \min }\limits_{{{\mathbf{Z}} \ge 0}} \left\langle {{\mathbf{F}}^{i} ,{\mathbf{Z}} - \left[ {\begin{array}{*{20}l} {\tau ({\mathbf{u}}^{i + 1} )} \hfill & {\quad {\mathbf{y}}^{i + 1} - p_{0}^{i + 1} {\hat{\mathbf{b}}}_{0} } \hfill \\ {\left( {{\mathbf{y}}^{i + 1} - p_{0}^{i + 1} {\hat{\mathbf{b}}}_{0} } \right)^{\text{H}} } \hfill & {\quad t^{i + 1} } \hfill \\ \end{array} } \right]} \right\rangle \\ & \qquad + \rho \left\| {{\mathbf{Z}} - \left[ {\begin{array}{*{20}l} {\tau ({\mathbf{u}}^{i + 1} )} \hfill & {\quad {\mathbf{y}}^{i + 1} - p_{0}^{i + 1} {\hat{\mathbf{b}}}_{0} } \hfill \\ {\left( {{\mathbf{y}}^{i + 1} - p_{0}^{i + 1} {\hat{\mathbf{b}}}_{0} } \right)^{\text{H}} } \hfill & {\quad t^{i + 1} } \hfill \\ \end{array} } \right]} \right\|_{\text{F}}^{2} \hfill \\ & = \mathop {\arg \min }\limits_{{{\mathbf{Z}} \ge 0}} \left\| {{\mathbf{Z}} - \left[ {\begin{array}{*{20}l} {\tau ({\mathbf{u}}^{i + 1} )} \hfill & {\quad {\mathbf{y}}^{i + 1} - p_{0}^{i + 1} {\hat{\mathbf{b}}}_{0} } \hfill \\ {\left( {{\mathbf{y}}^{i + 1} - p_{0}^{i + 1} {\hat{\mathbf{b}}}_{0} } \right)^{\text{H}} } \hfill & {\quad t^{i + 1} } \hfill \\ \end{array} } \right] + \frac{1}{2\rho }{\mathbf{F}}^{i} } \right\|_{\text{F}}^{2} \hfill \\ \end{aligned} $$
(51)

Based on the eigenvalue decomposition, we obtain

$$ \left[ {\begin{array}{*{20}l} {\tau ({\mathbf{u}}^{i + 1} )} \hfill & {\quad {\mathbf{y}}^{i + 1} - p_{0}^{i + 1} {\hat{\mathbf{b}}}_{0} } \hfill \\ {({\mathbf{y}}^{i + 1} - p_{0}^{i + 1} {\hat{\mathbf{b}}}_{0} )^{\text{H}} } \hfill & {\quad t^{i + 1} } \hfill \\ \end{array} } \right] - \frac{1}{2\rho }{\mathbf{F}}^{i} = {\mathbf{D}} {\varvec{\Lambda}} {\mathbf{D}}^{\text{H}} $$
(52)

Then, \({\mathbf{Z}}^{i + 1} = {\mathbf{D}}{\varvec{\Lambda}}^{\!+}{\mathbf{D}}^{\text{H}}\) is obtained, where \({{\varvec{\Lambda}}}^{ + }\) is gained by substituting the negative entries in \({{\varvec{\Lambda}}}\) with 0.

In the case of \({\mathbf{F}}^{i + 1}\), we have

$$ \begin{gathered} \nabla_{{\mathbf{F}}} \Gamma \left( {{\mathbf{y}}^{i + 1} ,p_{0}^{i + 1} ,{\mathbf{u}}^{i + 1} ,t^{i + 1} ,{\mathbf{Z}}^{i + 1} ,{\mathbf{F}}} \right) \hfill \\ = \nabla_{{\mathbf{F}}} \left\langle {{\mathbf{F}},{\mathbf{Z}}^{i + 1} - \left[ {\begin{array}{*{20}l} {\tau ({\mathbf{u}}^{i + 1} )} \hfill & {{\mathbf{y}}^{i + 1} - p_{0}^{i + 1} {\hat{\mathbf{b}}}_{0} } \hfill \\ {\left( {{\mathbf{y}}^{i + 1} - p_{0}^{i + 1} {\hat{\mathbf{b}}}_{0} } \right)^{\text{H}} } \hfill & {t^{i + 1} } \hfill \\ \end{array} } \right]} \right\rangle \\ = {\mathbf{Z}}^{i + 1} - \left[ {\begin{array}{*{20}l} {\tau \left( {{\mathbf{u}}^{i + 1} } \right)} \hfill & {\quad {\mathbf{y}}^{i + 1} - p_{0}^{i + 1} {\hat{\mathbf{b}}}_{0} } \hfill \\ {\left( {{\mathbf{y}}^{i + 1} - p_{0}^{i + 1} {\hat{\mathbf{b}}}_{0} } \right)^{\text{H}} } \hfill & {t^{i + 1} } \hfill \\ \end{array} } \right] \hfill \\ \end{gathered} $$
(53)

Thereafter, \({\mathbf{F}}^{i + 1}\) is updated as

$$ {\mathbf{F}}^{i + 1} = {\mathbf{F}}^{i} + \rho \left\{ {{\mathbf{Z}}^{i + 1} - \left[ {\begin{array}{*{20}l} {\tau ({\mathbf{u}}^{i + 1} )} \hfill & {{\mathbf{y}}^{i + 1} - p_{0}^{i + 1} {\hat{\mathbf{b}}}_{0} } \hfill \\ {\left( {{\mathbf{y}}^{i + 1} - p_{0}^{i + 1} {\hat{\mathbf{b}}}_{0} } \right)^{\text{H}} } \hfill & {t^{i + 1} } \hfill \\ \end{array} } \right]} \right\} $$
(54)

ADMM is completed once the maximum number of iterations, that is, \(i_{\max }\), is achieved or the stopping criterion is met.

Appendix C

The deviation between \({\hat{\mathbf{y}}}\) and \({\mathbf{r}}_{I}\), excluding their interpolated elements, can be expressed as

$$ \begin{gathered} \left\| {{\hat{\mathbf{y}}} \oplus {\mathbf{g}} - {\mathbf{r}}_{I} } \right\|_{2}^{2} = \left\| {{\hat{\mathbf{y}}} \oplus {\mathbf{g}} - {\mathbf{y}}^{{\mathbf{*}}} \oplus {\mathbf{g}} + {\mathbf{y}}^{{\mathbf{*}}} \oplus {\mathbf{g}} - {\mathbf{r}}_{I} } \right\|_{2}^{2} \hfill \\ = \left\| {{\hat{\mathbf{y}}} \oplus {\mathbf{g}} - {\mathbf{y}}^{{\mathbf{*}}} \oplus {\mathbf{g}}} \right\|_{2}^{2} + \left\| {{\mathbf{y}}^{{\mathbf{*}}} \oplus {\mathbf{g}} - {\mathbf{r}}_{I} } \right\|_{2}^{2} + 2\left\langle {{\hat{\mathbf{y}}} \oplus {\mathbf{g}} - {\mathbf{y}}^{{\mathbf{*}}} \oplus {\mathbf{g}},{\mathbf{y}}^{{\mathbf{*}}} \oplus {\mathbf{g}} - {\mathbf{r}}_{I} } \right\rangle \hfill \\ \end{gathered} $$
(55)

According to (55), we get

$$ \left\| {{\hat{\mathbf{y}}} \oplus {\mathbf{g}} - {\mathbf{y}}^{{\mathbf{*}}} \oplus {\mathbf{g}}} \right\|_{2}^{2} = \left\| {{\hat{\mathbf{y}}} \oplus {\mathbf{g}} - {\mathbf{r}}_{I} } \right\|_{2}^{2} - \left\| {{\mathbf{y}}^{{\mathbf{*}}} \oplus {\mathbf{g}} - {\mathbf{r}}_{I} } \right\|_{2}^{2} - 2\left\langle {{\hat{\mathbf{y}}} \oplus {\mathbf{g}} - {\mathbf{y}}^{{\mathbf{*}}} \oplus {\mathbf{g}},{\mathbf{y}}^{{\mathbf{*}}} \oplus {\mathbf{g}} - {\mathbf{r}}_{I} } \right\rangle $$
(56)

Introducing the Cauchy–Schwarz inequality into the last term of (56) yields

$$ \left\langle {{\hat{\mathbf{y}}} \oplus {\mathbf{g}} - {\mathbf{y}}^{{\mathbf{*}}} \oplus {\mathbf{g}},{\mathbf{y}}^{{\mathbf{*}}} \oplus {\mathbf{g}} - {\mathbf{r}}_{I} } \right\rangle \le \left\| {{\hat{\mathbf{y}}} \oplus {\mathbf{g}} - {\mathbf{y}}^{{\mathbf{*}}} \oplus {\mathbf{g}}} \right\|_{2} \left\| {{\mathbf{y}}^{{\mathbf{*}}} \oplus {\mathbf{g}} - {\mathbf{r}}_{I} } \right\|_{2} $$
(57)

Based on (23), (57), and \(\left\| {{\mathbf{y}}^{{\mathbf{*}}} \oplus {\mathbf{g}} - {\mathbf{r}}_{I} } \right\|_{2} \le \left\| {\tau ({\mathbf{y}}^{{\mathbf{*}}} ) \oplus {\mathbf{G}} - {\mathbf{R}}_{I} } \right\|_{\text{F}}\), (56) can be transformed into [35]

$$ \left\| {{\hat{\mathbf{y}}} \oplus {\mathbf{g}} - {\mathbf{y}}^{{\mathbf{*}}} \oplus {\mathbf{g}}} \right\|_{2}^{2} \le \tfrac{\mu }{2}\left\{ {\tfrac{1}{L}{\text{Tr}} \left( {\tau ({\mathbf{u}}^{{\mathbf{*}}} - {\hat{\mathbf{u}}})} \right) + t^{{\mathbf{*}}} - \hat{t}} \right\} + 2\left\| {{\hat{\mathbf{y}}} \oplus {\mathbf{g}} - {\mathbf{y}}^{{\mathbf{*}}} \oplus {\mathbf{g}}} \right\|_{2} \left\| {\tau ({\mathbf{y}}^{{\mathbf{*}}} ) \oplus {\mathbf{G}} - {\mathbf{R}}_{I} } \right\|_{\text{F}} $$
(58)

where \({\mathbf{G}} = \tau ({\mathbf{g}})\), and \({\mathbf{R}}_{I} = \tau ({\mathbf{r}}_{I} )\) stands for the covariance matrix of the derived virtual array [39]. Subsequently, the off-the-shelf conclusion in Lemma 1 [24] is exploited, described as

Lemma 1

If \({\mathbf{x}}(k),k = 1,2, \cdots ,K\) is a Gaussian random vector following the distribution \({\mathbf{x}}(k)\sim CN(0,{\mathbf{R}}_{x} )\),

$$ {\text{P}} \left\{ {\left\| {{\mathbf{R}}_{x} - {\overline{\mathbf{R}}}_{x} } \right\|_{\text{F}} \ge \tfrac{1}{\sqrt K }{\text{Tr}} ({\mathbf{R}}_{x} )} \right\} \le 2{\text{e}}^{ - 2c\sqrt K } $$
(59)

Here, \({\text{P}} \left\{ \cdot \right\}\) represents the probability. Without loss of generality, generalizing (59) to the virtual domain yields [35, 39]

$$ \left\| {\tau ({\mathbf{y}}^{{\mathbf{*}}} ) \oplus {\mathbf{G}} - {\mathbf{R}}_{I} } \right\|_{\text{F}} \le \tfrac{1}{\sqrt K }{\text{Tr}} \left( {\tau ({\mathbf{y}}^{{\mathbf{*}}} ) \oplus {\mathbf{G}}} \right) \le \tfrac{1}{\sqrt K }{\text{Tr}} \left( {\tau ({\mathbf{y}}_{q}^{{\mathbf{*}}} + p_{0}^{{\mathbf{*}}} {\mathbf{b}}_{0}^{{\mathbf{*}}} )} \right) = \tfrac{1}{\sqrt K }\left\{ {{\text{Tr}} \left( {\tau ({\mathbf{u}}^{{\mathbf{*}}} )} \right) + Lp_{0}^{{\mathbf{*}}} } \right\} = \mu_{1} $$
(60)

with a probability of, at least, \(1 - 2{\text{e}}^{ - 2c\sqrt K }\). In (60), we consider \({\mathbf{u}}^{{\mathbf{*}}}\) to be a precise estimate of \({\mathbf{y}}_{q}^{{\mathbf{*}}}\). Then, defining \(\mu_{2} = \tfrac{\mu }{2}\left\{ {\tfrac{1}{L}{\text{Tr}} \left( {\tau ({\mathbf{u}}^{{\mathbf{*}}} - {\hat{\mathbf{u}}})} \right) + t^{{\mathbf{*}}} - \hat{t}} \right\}\) and denoting \(\left\| {{\hat{\mathbf{y}}} \oplus {\mathbf{g}} - {\mathbf{y}}^{{\mathbf{*}}} \oplus {\mathbf{g}}} \right\|_{2}\) by \(y_{g}\), (58) is expressed in the following general form:

$$ y_{g}^{2} - 2\mu_{1} y_{g} - \mu_{2} = \left( {y_{g} - \mu_{1} - \sqrt {\mu_{1}^{2} + \mu_{2} } } \right)\left( {y_{g} - \mu_{1} + \sqrt {\mu_{1}^{2} + \mu_{2} } } \right) \le 0 $$
(61)

Thus, we get \(y_{g} - \mu_{1} - \sqrt {\mu_{1}^{2} + \mu_{2} } \le 0\), which means

$$ \left\| {{\hat{\mathbf{y}}} \oplus {\mathbf{g}} - {\mathbf{y}}^{{\mathbf{*}}} \oplus {\mathbf{g}}} \right\|_{2} \le \mu_{1} + \sqrt {\mu_{1}^{2} + \mu_{2} } $$
(62)

This completes the proof.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Y., Cao, F., He, C. et al. Robust Adaptive Beamforming via Virtual Interpolation-Based Atomic Norm Minimization. Circuits Syst Signal Process 42, 7377–7403 (2023). https://doi.org/10.1007/s00034-023-02450-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02450-y

Keywords

Navigation