Skip to main content
Log in

Component-Related Phase Noise Evaluation Method for the LC Oscillators

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This research paper presents a circuit-based phase noise model of a cross-coupled LC tank oscillator. The effect of the Oscillator’s noise is one of the most critical items in designing modern RF communication systems. The noise factor necessitates a more thorough comprehension of design tradeoffs in RF VCO IC implementations. This research paper introduces a new analytical derivation to produce a well-bounded third-order polynomial equation accurately representing the LC oscillator’s phase noise behaviour. The third-order polynomial equation includes circuit parameters such as capacitance, inductance and quality factors to understand the phase noise characteristics. The proposed method determines the amplitude and phase noise and forms a link with the circuit operating point, and phase noise is produced as a direct result of the circuit parameters. The advantage of the proposed resulting equation is that it avoids the need for complex simulations to identify the noise characteristics in such a process. The proposed equation was validated by comparing the tank circuit simulation results. The simulation results verify the applicability of the third-order polynomial equation representing the noise characteristics of the LC oscillator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Apostolina, & D. Manstretta, A 14.5–17.9 GHz Harmonically-coupled quad-core PN class-B DCO with-117.3 dBc/Hz phase noise at 1 MHz offset in 28-nm CMOS. in 2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), (pp. 211–214) IEEE (2022)

  2. T.S. Arora, A.K. Singh, A new voltage mode sinusoidal quadrature oscillator employing second generation voltage conveyor. AEU-Int. J. Electron. Commun. 154, 154304 (2022)

    Article  Google Scholar 

  3. M. Bagheri, X. Li, Phase noise suppression in LC oscillators: tutorial. Int. J. Circuit Theory Appl. 49(10), 3131–3156 (2021)

    Article  Google Scholar 

  4. M. Bagheri, & X. Li, Phase noise analysis of a modified cross coupled oscillator. in 2020 17th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), (pp. 1–4) IEEE (2020)

  5. N.N. Bogobov, J.A. Mitropolʹskij, I.A. Mitropol’skii, Y.A. Mitropolsky, Asymptotic methods in the theory of nonlinear oscillations (CRC Press, 1961)

    Google Scholar 

  6. M. Bonnin, Amplitude and phase dynamics of noisy oscillators. Int. J. Circuit Theory Appl. 45(5), 636–659 (2017)

    Article  Google Scholar 

  7. F.J. del Pino Suárez, S.L. Khemchandani, A new current-shaping technique based on a feedback injection mechanism to reduce VCO phase noise. Sensors 21(19), 6583 (2021)

    Article  Google Scholar 

  8. A. Demir, J. Roychowdhury, A reliable and efficient procedure for oscillator PPV computation, with phase noise macromodeling applications. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22(2), 188–197 (2003)

    Article  Google Scholar 

  9. M. Esmaeilzadeh, Y. Audet, M. Ali, M. Sawan, A low-phase-noise CMOS ring voltage-controlled oscillator intended for time-based sensor interfaces. IEEE Access 10, 101186–101197 (2022)

    Article  Google Scholar 

  10. A. Franceschin, D. Riccardi, & A. Mazzanti, Series-resonance BiCMOS VCO with phase noise of-138dBc/Hz at 1MHz offset from 10GHz and-190dBc/Hz FoM. in 2022 IEEE International Solid-State Circuits Conference (ISSCC) (Vol. 65, pp. 1–3) IEEE (2022)

  11. F. Gagliardi, G. Manfredini, A. Ria, M. Piotto, P. Bruschi, Low-phase-noise CMOS relaxation oscillators for on-chip timing of IoT sensing platforms. Electronics 11(11), 1794 (2022)

    Article  Google Scholar 

  12. D. Gaidioz, A. Cathelin, Y. Deval, 28-nm FD-SOI CMOS Submilliwatt ring oscillator-based dual-loop integer-N PLL for 2.4-GHz internet-of-things applications. IEEE Trans. Microw. Theory Tech. 70(4), 2207–2216 (2022)

    Article  Google Scholar 

  13. A. Hajimiri, T.H. Lee, A general theory of phase noise in electrical oscillators. IEEE J. Solid-State Circuits 33(2), 179–194 (1998)

    Article  Google Scholar 

  14. A. Hossain, S.B. Lee, C.W. Byeon, 30-GHz low-phase-noise VCO with negative transconductance optimization in 65-nm CMOS. IEEE Microw. Wirel. Compon. Lett. 33, 59–62 (2022)

    Article  Google Scholar 

  15. D. Jordan, P. Smith, Nonlinear ordinary differential equations: an introduction for scientists and engineers (OUP Oxford, 2007)

    Book  Google Scholar 

  16. K. Kato, N. Kurokawa, T. Saitō, M. Kurihara, Number theory: introduction to class field theory (American Mathematical Society, 2011)

    Google Scholar 

  17. S.S. Kebria, H. Ghonoodi, Increasing power efficiency in the design of a low power and low phase noise CMOS LC oscillator. Int. J. Circuit Theory Appl. 49(1), 18–30 (2021)

    Article  Google Scholar 

  18. J. Jo, D. Kim, A. Hejazi, Y. Pu, Y. Jung, H. Huh, K.Y. Lee, Low phase-noise, 24 and 58 GHz dual-band frequency synthesizer with class-C VCO and bias-controlled charge pump for RF wireless charging system in 180 nm CMOS process. Electronics 11(7), 1118 (2022)

    Article  Google Scholar 

  19. P. Kurth, K. Misselwitz, P. Scholz, U. Hecht, & F. Gerfers, A 0.007 mm 2 48–53 GHz low-noise LC-oscillator using an ultra-compact high-Q resonator. in 2022 14th German Microwave Conference (GeMiC) (pp. 104–107) IEEE (2022).

  20. W. C. Lai, Integrated frequency synthesiser with an improved LC-tank colpitts voltage-controlled oscillator. in 2022 14th Global Symposium on Millimeter-Waves & Terahertz (GSMM) (pp. 5–8). IEEE (2022, May)

  21. D.B. Lesson, A simple model of feedback oscillator noise spectrum. Proc. IEEE 54(2), 329–330 (1966)

    Article  Google Scholar 

  22. S.K. Magierowski, S. Zukotynski, CMOS LC-oscillator phase-noise analysis using nonlinear models. IEEE Trans. Circuits Syst. I Regul. Pap. 51(4), 664–677 (2004)

    Article  Google Scholar 

  23. M. Malekzadeh, A.R. Noei, Nonlinear observer design based on immersion and invariance method: an insight to chaotic systems. Int. J. Dyn. Control 9(2), 438–447 (2021)

    Article  MathSciNet  Google Scholar 

  24. A. J. Obaid, "Critical research on the novel progressive, JOKER an opportunistic routing protocol technology for enhancing the network performance for multimedia communications. in Research in Intelligent and Computing in Engineering: Select Proceedings of RICE 2020. Springer, Singapore, (2021)

  25. A Piemontese, G. Colavolpe, & T. Eriksson, A new analytical model of phase noise in communication systems. in 2022 IEEE Wireless Communications and Networking Conference (WCNC) (pp. 926–931) IEEE (2022)

  26. M.E. Rasekh, M. Abdelghany, U. Madhow, M. Rodwell, Phase noise in modular millimeter wave massive MIMO. IEEE Trans. Wireless Commun. 20(10), 6522–6535 (2021)

    Article  Google Scholar 

  27. D. Riccardi, A. Franceschin, A. Mazzanti, 1/f2 Phase noise analysis in active-coupling LC-tank oscillators with frequency mismatch. IEEE Trans. Circuits Syst. II Express Briefs 69(2), 319–323 (2021)

    Google Scholar 

  28. Ö. Sabuncu, B. Bilgehan, Statistical RMS delay spread representation in 5G mm-wave analysis using real-time measurements. Wireless Netw. 29, 1–11 (2023)

    Article  Google Scholar 

  29. D. Sachan, H. Kumar, M. Goswami, P.K. Misra, A 2.4 GHz low power low phase-noise enhanced FOM VCO for RF applications using 180 nm CMOS technology. Wirel. Pers. Commun. 101, 391–403 (2018)

    Article  Google Scholar 

  30. P. Shasidharan, H. Ramiah, J. Rajendran, A 2.2 to 2.9 GHz complementary class-C VCO with PMOS tail-current source feedback achieving–120 dBc/Hz phase noise at 1 MHz offset. IEEE Access 7, 91325–91336 (2019)

    Article  Google Scholar 

  31. R. Sotner, J. Jerabek, L. Polak, R. Theumer, L. Langhammer, Electronic tunability and cancellation of serial losses in wire coils. Sensors 22(19), 7373 (2022)

    Article  Google Scholar 

  32. H. Wang, J. Chen, L. Zhang, X. Liu, High-efficiency millimeter-wave CMOS oscillator design using port voltage/current optimisation and T-embedding networks. IEEE Trans. Terahertz Sci. Technol. 12(6), 550–564 (2022)

    Article  Google Scholar 

  33. Y. Wang, X. Li, J. Zhang, J. Wo, Spurious level and phase noise improved Fourier domain mode-locked optoelectronic Oscillator based on a self-injection-locking technique. Opt. Express 29(5), 7535–7543 (2021)

    Article  Google Scholar 

  34. U. Yasir, X. Li, C. Cao, Low power ASK modulator based on direct injection-locked current reuse VCO in 130-nm CMOS technology for high data rate RFID applications. Int. J. Circuit Theory Appl. 50(1), 56–71 (2022)

    Article  Google Scholar 

  35. P. Yelleswarapu, A. Jha, R. Willis, Y. Makris, Phase noise reduction in LC VCO’s using an array of cross-coupled nanoscale MOSFETs and intelligent post-fabrication selection. IEEE Trans. Microw. Theory Tech. 70, 3244–3256 (2022)

    Article  Google Scholar 

  36. Y. Zhang, W. Zhang, P. Shen, H. Xie, D. Jin, S. Xu, ... & Z. Zhang, A Novel LC VCO with high output power and low phase noise using differential active inductor. in 2018 IEEE 3rd International Conference on Integrated Circuits and Microsystems (ICICM) (pp. 90–93) IEEE (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bülent Bilgehan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilgehan, B., Sabuncu, Ö. Component-Related Phase Noise Evaluation Method for the LC Oscillators. Circuits Syst Signal Process 43, 34–53 (2024). https://doi.org/10.1007/s00034-023-02472-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02472-6

Keywords

Navigation