Skip to main content
Log in

Gabor Phase Retrieval in the Generalized Paley–wiener Space

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Gabor phase retrieval is the problem of recovering a signal from the absolute values of Gabor transform, which has turned into a very active research area. In the paper, we define a generalized Paley–Wiener space, which is obtained by applying the special affine Fourier transform to \(L^{p}([-B,B])\,(2\le p\le \infty )\) and provide the uniqueness of the Gabor phase retrieval in the generalized Paley–Wiener space. When the window function \(\psi \) is the inverse special affine Fourier transform of \(\phi =2^{\frac{1}{4}}e^{-\pi x^{2}}\), we show that every signal in the generalized Paley–Wiener space can be uniquely recovered, up to a global sign, from its the magnitudes of Gabor measurement sampled on a rectangular lattice. Recently, Grohs, Liehr and Wellershoff studied the Gabor phase retrieval problems in the conventional Paley–Wiener space. The paper extends their results to the generalized Paley–Wiener space. Since the generalized Paley–Wiener space includes a broader class of signals, our results expand the applied range of the Gabor phase retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S. Abe, J.T. Sheridan, Optical operations on wave functions as the abelian subgroups of the special affine Fourier transformation. Opt. Lett. 19(22), 1801–1803 (1994)

    Article  Google Scholar 

  2. R. Alaifari, M. Wellershok, Stability estimates for phase retrieval from discrete Gabor measurements. J. Fourier Anal. Appl. 27(6), 1–31 (2021)

    MathSciNet  Google Scholar 

  3. R. Alaifari, M. Wellershoff, Uniqueness of STFT phase retrieval for bandlimited functions. Appl. Comput. Harmon. Anal. 50(1), 34–48 (2021)

    Article  MathSciNet  Google Scholar 

  4. R. Alaifari, M. Wellershoff, Phase retrieval from sampled Gabor transform magnitudes: counterexamples. J. Fourier Anal. Appl. 28(9), 1–8 (2022)

    MathSciNet  Google Scholar 

  5. L. Almeida, The fractional Fourier transform and time–frequency representations. IEEE Tran. Signal Process 42(11), 3084–3091 (1994)

    Article  Google Scholar 

  6. L. Auslander, R. Tolimieri, Radar ambiguity functions and group theory. SIAM J. Math. Anal. 16(3), 577–601 (1985)

    Article  MathSciNet  Google Scholar 

  7. A. Bhandari, A. Zayed, Shift-invariant and sampling spaces associated with the special affine Fourier transform. Appl. Comput. Harmon. Anal. 47(1), 30–52 (2019)

    Article  MathSciNet  Google Scholar 

  8. R.N. Bracewell, The Fourier Transform and its Applications (McGraw-Hill College, New York, 1986)

    Google Scholar 

  9. L. Bragg, The Rutherford memorial lecture 1960. The development of X-ray analysis. Proc. R. Soc. Lond. Ser. A 262(1309), 145–158 (1961)

    Article  Google Scholar 

  10. W. Chen, Z. Fu, L. Grafakos, Y. Wu, Fractional Fourier transforms on \(L^{p}\) and applications. Appl. Comput. Harmon. Anal. 55(1), 71–96 (2021)

    Article  MathSciNet  Google Scholar 

  11. J. Dainty, J. Fienup, Phase retrieval and image reconstruction for astronomy. Image Recove. Theory Appl. 231, 275 (1987)

    Google Scholar 

  12. D. Griffin, J. Lim, Signal estimation from modified short-time Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 32(2), 236–243 (1984)

    Article  Google Scholar 

  13. K. Grochenig, Foundations of Time–Frequency Analysis (Springer Science Business Media, Berlin, 2001)

    Book  Google Scholar 

  14. P. Grohs, L. Liehr, Injectivity of Gabor phase retrieval from lattice measurements. Appl. Comput. Harmon. Anal. 62(1), 173–193 (2022)

    MathSciNet  Google Scholar 

  15. E. Hecht, A. Zajac, Optics (Addison-Wesley, Boston, 1974)

    Google Scholar 

  16. J. Hua, L. Liu, G.Q. Li, Extended fractional Fourier transforms. J. Opt. Soc. Am. A 14(12), 3316–3322 (1997)

    Article  MathSciNet  Google Scholar 

  17. P. Jaming, Uniqueness results in an extension of Pauli’s phase retrieval problem. Appl. Comput. Harmon. Anal. 37(3), 413–441 (2014)

    Article  MathSciNet  Google Scholar 

  18. P. Jaming, Phase retrieval techniques for radar ambiguity problems. J. Fourier Anal. Appl. 5(4), 309–329 (1999)

    Article  MathSciNet  Google Scholar 

  19. R. Millane, Phase retrieval in crystallography and optics. J. Opt. Soc. Am. A 7(3), 394–411 (1990)

    Article  Google Scholar 

  20. S. Nawab, T. Quatieri, J. Lim, Signal reconstruction from short time Fourier transform magnitude. IEEE Trans. Acoust. Speech Signal Process. 31(4), 986–998 (1983)

    Article  Google Scholar 

  21. L. Rabiner, B. Juang, Fundamentals of Speech Recognition (Prentice-Hall Inc, Hoboken, 1993)

    Google Scholar 

  22. W. Rudin, Real and Complex Analysis (McGraw-Hill Inc, New York, 1970)

    Google Scholar 

  23. V. Stojanovic, V. Filipovic, Adaptive input design for identification of output error model with constrained output. Circ. Syst. Signal Pr. 33, 97–113 (2014)

    Article  MathSciNet  Google Scholar 

  24. V. Stojanovic, N. Nedic, Robust Kalman filtering for nonlinear multivariable stochastic systems in the presence of non-Gaussian noise. Int. J. Robust Nonlin. 26(3), 445–460 (2015)

    Article  MathSciNet  Google Scholar 

  25. V. Stojanovic, N. Nedic, D. Prsic, L. Dubonjic, Optimal experiment design for identification of ARX models with constrained output in non-Gaussian noise. Appl. Math. Model. 40(13), 6676–6689 (2016)

    Article  MathSciNet  Google Scholar 

  26. M. Wellershoff, Injectivity of sampled Gabor phase retrieval in spaces with general integrability conditions. arXiv:2112.10136 (2021)

  27. L. Xiao, W. Sun, Sampling theorems for signals periodic in the linear canonical transform domain. Opt. Commun. 290(1), 14–18 (2013)

    Article  Google Scholar 

  28. Z. Xiyang, W. Deyun, Z. Wei, A generalized convolution theorem for the special affine Fourier transform and its application to filtering. Optik 127(5), 2613–2616 (2016)

    Article  Google Scholar 

  29. R. Zalik, On approximation by shifts and a theorem of Wiener. Trans. Am. Math. Soc. 243, 299–308 (1978)

    Article  MathSciNet  Google Scholar 

  30. A.I. Zayed, Advances in Shannon’s sampling theory (Taylor Francis Group, Milton Park, 1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported partially by the National Natural Science Foundation of China (12071230, 11971348, 11201336 and 11401435) and the Natural Science Research Project of Higher Education of Tianjin (2018KJ148).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Wu, L., Guo, Z. et al. Gabor Phase Retrieval in the Generalized Paley–wiener Space. Circuits Syst Signal Process 43, 470–494 (2024). https://doi.org/10.1007/s00034-023-02485-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02485-1

Keywords

Mathematics Subject Classification

Navigation