Skip to main content
Log in

A Switching-Based Variable Step-Size PNLMS Adaptive Filter for Sparse System Identification

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The standard proportionate normalized least mean square (PNLMS) adaptive algorithm suffers from convergence performance limitation due to a constant step-size during the convergence period. In this paper, a switching-based variable step-size PNLMS is proposed to improve the convergence performance in sparse system identification. To adjust the step-size, the convergence performance of PNLMS is first analysed in the statistical sense and by exploiting the analysis, a switching-based method is then proposed, which brings about a fast convergence towards the desired steady-state mean-square weight deviation. The step-size reduces during the convergence period in a few steps, while in the case of abrupt change in the system impulse response, the step-size increases to its initial value. A sub-band version of the proposed adaptive algorithm is further proposed for highly correlated input signals. Simulation results confirm the superiority of the proposed full-band and sub-band algorithms in terms of convergence performance compared to some competing adaptive algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Code Availability

Source codes of the proposed VSS-PNLMS algorithm are publicly available at https://doi.org/10.5281/zenodo.8180278.

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Notes

  1. Matlab codes of VSS-PNLMS for this simulation are available in [7].

References

  1. U.M. Al-Saggaf, M. Moinuddin, M. Arif, A. Zerguine, The q-least mean squares algorithm. Signal Process 111, 50–60 (2015)

    Article  Google Scholar 

  2. S. Attallah, The wavelet transform-domain LMS adaptive filter with partial subband-coefficient updating. IEEE Trans. Circuits Syst. II: Express Briefs 53(1), 8–12 (2006)

    Google Scholar 

  3. Audio and Communications Signal Processing Group, Institute of Telecommunications and Multimedia Applications. https://gtac.webs.upv.es/index.php

  4. M. Bekrani, A W.H. Khong, A delayless sub-band PNLMS adaptive filter for sparse channel identification, in 28th Iranian Conference on Electrical Engineering (ICEE), (IEEE, 2020), pp. 1–6

  5. M. Bekrani, A.W.H. Khong, M. Lotfizad, A clipping-based selective-tap adaptive filtering approach to stereophonic acoustic echo cancellation. IEEE Trans. Audio Speech Lang. Process 19(6), 1826–1836 (2011)

    Article  Google Scholar 

  6. M. Bekrani, M. Lotfizad, Clipped LMS/RLS adaptive algorithms: analytical evaluation and performance comparison with low-complexity counterparts. Circuits Syst. Signal Process 34(5), 1655–1682 (2015)

    Article  Google Scholar 

  7. M. Bekrani, Z. Mohagheghian-Bidgoli, Matlab codes for VSS-PNLMS. (2023) Available OnLine: https://doi.org/10.5281/zenodo.8180278

  8. M. Bekrani, H. Zayyani, A weighted soft-max PNLMS algorithm for sparse system identification. Int. J. Inf. Commun. Technol. Res. 8(3), 7–14 (2016)

    Google Scholar 

  9. J. Benesty, S.L. Gay, An improved PNLMS algorithm, in IEEE International Conference on Acoustics, Speech, and Signal Process. (ICASSP), USA (2002), pp. II-1881–II-1884

  10. J. Benesty, Y. Huang, Adaptive signal processing—applications to real-world problems (Springer-Verlag, Berlin, 2003)

    Book  Google Scholar 

  11. N.J. Bershad, J.C.M. Bermudez, A switched variable step size NLMS adaptive filter. Digit. Signal Process 101, 102730 (2020)

    Article  Google Scholar 

  12. S. Chen, F. Gu, C. Liang, H. Meng, K. Wu, Z. Zhou, Review on active noise control technology for \(\alpha \)-stable distribution impulsive noise. Circuits Syst. Signal Process 41, 956–993 (2022)

    Article  Google Scholar 

  13. S. Ciochina, C. Paleologu, J. Benesty, An optimized NLMS algorithm for system identification. Signal Process 118, 115–121 (2016)

    Article  Google Scholar 

  14. S.H. Dandach, F. Baris, S. Dasgupta, B.D.O. Anderson, Adaptive source localization by mobile agents, in Proceedings of the 45th IEEE Conference on Decision and Control (2006), pp. 2045–2050

  15. H. Deng, M. Doroslovacki, Improving convergence of the PNLMS algorithm for sparse impulse response identification. IEEE Signal Process. Lett 12(3), 181–184 (2005)

    Article  Google Scholar 

  16. P.S.R. Diniz, G.O. Pinto, A. Hjorungnes, Data selective partial update affine projection algorithm, in IEEE International Conference on Acoustics, Speech, and Signal Process. (ICASSP) (2008), pp. 3833–3836

  17. Y. Dong, Z. Zheng, Set-membership proportionate NSAF algorithm with individual activation factors, in 3rd IEEE International Conference on Computer and Communications (ICCC), pp. 1579–1583 (2017)

  18. D.L. Duttweiler, Proportionate normalized least-mean-squares adaptation in echo cancelers. IEEE Trans. Speech Audio Process 8(5), 508–518 (2000)

    Article  Google Scholar 

  19. M.S. Esfand-Abadi, Proportionate normalized subband adaptive filter algorithms for sparse system identification. Signal Process 89, 1467–1474 (2009)

    Article  Google Scholar 

  20. M.S. Esfand-Abadi, S. Kadkhodazadeh, A family of proportionate normalized subband adaptive filter algorithms. J. Frank. Inst. 348(2), 212–238 (2011)

    Article  Google Scholar 

  21. B. Farhang-Boroujeny, Adaptive filters: theory and applications, 2nd edn. (John Wiley and Sons, New York, 2013)

    Book  Google Scholar 

  22. M. Guilin, F. Gran, F. Jacobsen, F. Agerkvist, Adaptive feedback cancellation with band-limited LPC vocoder in digital hearing aids. IEEE Trans. Audio Speech Lang. Process 19(4), 677–687 (2011)

    Article  Google Scholar 

  23. Y. Han, Y. Li, Mixed error variable step-size algorithm with constrained function. Circuits Syst. Signal Process 41, 5307–5318 (2022)

    Article  Google Scholar 

  24. S. Haykin, Adaptive filter theory, 4th edn. (Prentice-Hall, New Jersey, 2002)

    Google Scholar 

  25. F. Hoseiniamin, H. Zayyani, M. Korki, M. Bekrani, A low complexity proportionate generlized correntropy-based diffusion LMS algorithm with closed-form gain coefficients. IEEE Trans. Circuits Syst. II: Express Briefs 70(7), 2690–2694 (2023)

    Google Scholar 

  26. H.C. Huang, J. Lee, A new variable step size NLMS algorithm and its performance analysis. IEEE Trans. Signal Process 60(4), 2055–2060 (2012)

    Article  MathSciNet  Google Scholar 

  27. F. Huang, Z. Xie, S. Zhang, Sparse Bayesian least-mean-squares algorithm. IEEE Trans. Circuits Syst. II. Exp. Briefs 70(7), 2710–2714 (2023)

    Google Scholar 

  28. F. Huang, J. Zhang, S. Zhang, Mean-square-deviation analysis of probabilistic LMS algorithm. Digit. Signal Process 92, 26–35 (2019)

    Article  Google Scholar 

  29. J.H. Husøy, M.S. Esfand-Abadi, On the convergence speed of the normalized subband adaptive filter: Some new insights and interpretations, in Proc (International Symposium on Signals, Circuits and Systems, Romania, 2017)

  30. Z. Jin, Y. Li, Y. Wang, An enhanced set-membership PNLMS algorithm with a correntropy induced metric constraint for acoustic channel estimation. Entropy 19(6), 281 (2017)

    Article  Google Scholar 

  31. A.W.H. Khong, P.A. Naylor, J. Benesty, A low delay and fast converging improved proportionate algorithm for sparse system identification. EURASIP J. Audio Speech Music Process. 2007, 1–8 (2007)

    Article  Google Scholar 

  32. K.A. Lee, W.S. Gan, Improving convergence of the NLMS algorithm using constrained subband updates. IEEE Signal Process Lett. 11(91), 736–739 (2004)

    Article  Google Scholar 

  33. K.A. Lee, W.S. Gan, S.M. Kuo, Subband adaptive filter: theory and implementation (Wiley, Chichester, 2009)

    Book  Google Scholar 

  34. A. Mader, H. Puder, G. Schmidt, Step-size control for echo cancellation filters—an overview. Signal Process 89(9), 1697–1719 (2000)

    Article  Google Scholar 

  35. D.G. Manolakis, V.K. Ingle, S.M. Kogon, Statistical and adaptive signal processing (Artech, MA, USA, 2005)

    Google Scholar 

  36. K. Mayyas, F. Momani, An LMS adaptive algorithm with a new step-size control equation. J. Frank. Inst. 348(1), 589–605 (2011)

    Article  MathSciNet  Google Scholar 

  37. K. Nishikawa, H. Kiya, New structure of affine projection algorithm using a novel subband adaptive system, in Proc (Third Workshop on Signal Processing Advances in Wireless Communications, China, 2001), pp. 364–367

  38. A. Sadiq, S. Khan, I. Naseem, R. Togneri, M. Bennamoun, Enhanced q-least mean square. Circuits Syst. Signal Process 38(10), 4817–4839 (2019)

    Article  Google Scholar 

  39. A. Sadiq, I. Naseem, S. Khan, M. Bennamoun, A novel quantum calculus-based complex least mean square algorithm (q-CLMS). Appl. Intell. 53(2), 1350–1369 (2023)

    Article  Google Scholar 

  40. A.H. Sayed, Adaptive filtering (Wiley-IEEE Press, New York, 2008)

    Google Scholar 

  41. A. Singer, J. Nelson, S. Kozat, Signal processing for underwater acoustic communications. IEEE Commun. Mag. 47(1), 90–96 (2009)

    Article  Google Scholar 

  42. F.C. Souza, O.J. Tobias, R. Seara, D.R. Morgan, A PNLMS algorithm with individual activation factors. IEEE Trans. Signal Process 58(4), 2036–2047 (2010)

    Article  MathSciNet  Google Scholar 

  43. E. Vlachos, A.S. Lalos, K. Berberidis, Stochastic gradient pursuit for adaptive equalization of sparse multipath channels. IEEE. J. Emerg. Sel. Top. Circuits Syst. 2(3), 413–423 (2012)

    Article  Google Scholar 

  44. W. Xia, Y. Wang, A variable step-size diffusion LMS algorithm over networks with noisy links. Signal Process 148, 205–213 (2018)

    Article  Google Scholar 

  45. Y. Yu, H. Zhao, R.C. Lamare, L. Lue, Sparsity-aware subband adaptive algorithms with adjustable penalties. Digit. Signal Process 84, 93–106 (2019)

    Article  MathSciNet  Google Scholar 

  46. V. Zarzos, A.K. Nandi, Adaptive blind source separation for virtually any source probability density function. IEEE Trans. Signal Process 48(2), 477–488 (2000)

    Article  Google Scholar 

  47. Y. Zhang, N. Li, J.A. Chambers, Y. Hao, New gradient-based variable step size LMS algorithms. EURASIP J. Adv. Signal Process 2008, 529480 (2008)

    Article  Google Scholar 

  48. H. Zhao, Y. Yu, S. Gao, X. Zeng, Z. He, Memory proportionate APA with individual activation factors for acoustic echo cancellation. IEEE/ACM Trans. Audio Speech Lang. Process 22(6), 1047–1055 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Bekrani.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Stochastic Analysis of PNLMS Convergence Behaviour for Gaussian Inputs

1.1 Transient Analysis

Substituting (17) and (1) into (2) gives

$$\begin{aligned} e(n)&={\textbf{x}}^T(n){\textbf{h}}(n)-{\textbf{x}}^T(n){\textbf{w}}(n)+u(n)\nonumber \\&= -\textbf{x}^T(n)\textbf{v}(n)+u(n) \end{aligned}$$
(20)

where \({\textbf{v}}(n)={\textbf{w}}(n)-{\textbf{h}}(n)\). Subtracting \({\textbf{h}}(n)\) from both sides of (6) and using (20) yields

$$\begin{aligned} \textbf{v}(n+1)=\left\{ {\textbf {I}}-\mu \frac{\textbf{x}(n)\textbf{x}^T(n){\textbf {G}}(n)}{\textbf{x}^T(n){\textbf {G}}(n)\textbf{x}(n)}\right\} \textbf{v}(n)+\mu \frac{u(n){\textbf {G}}(n)\textbf{x}(n)}{\textbf{x}^T(n){\textbf {G}}(n)\textbf{x}(n)}-\textbf{q}(n). \end{aligned}$$
(21)

Then, post-multiplying (21) by its transpose and taking its average yields

$$\begin{aligned} {{\textbf {K}}}_{vv}(n+1)&={{\textbf {K}}}_{vv}(n)-\mu E\left[ \frac{{\textbf{x}}(n){\textbf{x}}^T(n){{\textbf {G}}}(n)}{{\textbf{x}}^T(n){{\textbf {G}}}(n){\textbf{x}}(n)}\right] {{\textbf {K}}}_{vv}(n)\nonumber \\&\quad -\mu {{\textbf {K}}}_{vv}(n)E\left[ \frac{{{\textbf {G}}}(n){\textbf{x}}(n){\textbf{x}}^T(n)}{{\textbf{x}}^T(n){{\textbf {G}}}(n){\textbf{x}}(n)}\right] \nonumber \\&\quad +\mu ^2E\left[ \frac{{\textbf{x}}(n){\textbf{x}}^T(n){{\textbf {G}}}(n){{\textbf {K}}}_{vv}(n){{\textbf {G}}}(n){\textbf{x}}(n){\textbf{x}}^T(n)}{\left( {\textbf{x}}^T(n){{\textbf {G}}}(n){\textbf{x}}(n)\right) ^2}\right] \nonumber \\&\quad +\mu ^2E\left[ u^2\frac{{{\textbf {G}}}(n){\textbf{x}}(n){\textbf{x}}^T(n){{\textbf {G}}}(n)}{\left( {\textbf{x}}^T(n){{\textbf {G}}}(n){\textbf{x}}(n)\right) ^2}\right] +E\left[ {\textbf{q}}(n){\textbf{q}}^T(n)\right] \end{aligned}$$
(22)

where \( {{\textbf {K}}}_{vv}(n)=E\left[ {\textbf{v}}(n){\textbf{v}}^T(n)\right] \). Equation (22) is obtained using independence theory which assumes the weights \({\textbf{w}}(n)\) are statistically independent from \({\textbf{x}}(n)\).

To simplify (22), we define \(\tilde{{{\textbf {K}}}}_{vv}(n)={{\textbf {G}}}(n){{\textbf {K}}}_{vv}(n){{\textbf {G}}}(n)\) and hence the fourth term in the right side of (22) can be simplified as

$$\begin{aligned}&E\left[ \frac{{\textbf{x}}(n){\textbf{x}}^T(n){{\textbf {G}}}(n){{\textbf {K}}}_{vv}(n){{\textbf {G}}}(n){\textbf{x}}(n){\textbf{x}}^T(n)}{\left( {\textbf{x}}^T(n){{\textbf {G}}}(n){\textbf{x}}(n)\right) ^2}\right] \nonumber \\&\quad =E\left[ \frac{{\textbf{x}}(n){\textbf{x}}^T(n)}{{\textbf{x}}^T(n){{\textbf {G}}}(n){\textbf{x}}(n)}\tilde{{{\textbf {K}}}}_{vv}(n)\frac{{\textbf{x}}(n){\textbf{x}}^T(n)}{{\textbf{x}}^T(n){{\textbf {G}}}(n){\textbf{x}}(n)}\right] \nonumber \\&\quad =2\tilde{{{\textbf {R}}}}_x(n)\tilde{{{\textbf {K}}}}_{vv}(n)\tilde{{{\textbf {R}}}}_x(n) +\textrm{Tr}\left[ \tilde{{{\textbf {R}}}}_x(n)\tilde{{{\textbf {K}}}}_{vv}(n)\right] \tilde{{{\textbf {R}}}}_x(n) \end{aligned}$$
(23)

where \(\tilde{{{\textbf {R}}}}_x(n)=E\left[ \frac{{\textbf{x}}(n){\textbf{x}}^T(n)}{{\textbf{x}}^T(n){{\textbf {G}}}(n){\textbf{x}}(n)} \right] \). The equality in (23) is true for zero-mean Gaussian inputs \({\textbf{x}}(n)\) [35] (Eq. (10.4.26)). As a result, (22) can be rewritten as

$$\begin{aligned} {{\textbf {K}}}_{vv}(n+1)&={{\textbf {K}}}_{vv}(n)-\mu \tilde{{{\textbf {R}}}}_x(n) {{\textbf {G}}}(n) {{\textbf {K}}}_{vv}(n)\nonumber \\&\quad -\mu {{\textbf {K}}}_{vv}(n){{\textbf {G}}}(n)\tilde{{{\textbf {R}}}}_x(n)\nonumber \\&\quad +2\mu ^2 \tilde{{{\textbf {R}}}}_x(n){{\textbf {G}}}(n){{\textbf {K}}}_{vv}(n){{\textbf {G}}}(n)\tilde{{{\textbf {R}}}}_x(n)\nonumber \\&\quad +\textrm{Tr}\left[ \tilde{{{\textbf {R}}}}_x(n){{\textbf {G}}}(n){{\textbf {K}}}_{vv}(n){{\textbf {G}}}(n)\right] \tilde{{{\textbf {R}}}}_x(n)\nonumber \\&\quad +\mu ^2\sigma _u^2 {{\textbf {G}}}(n)\hat{{{\textbf {R}}}}_x(n){{\textbf {G}}}(n)+\sigma _q^2{{\textbf {I}}}. \end{aligned}$$
(24)

To further proceed, we define the MSD criterion as

$$\begin{aligned} \xi (n)=E\left[ ({\textbf{w}}(n)-{\textbf{h}}(n))^T({\textbf{w}}(n)-{\textbf{h}}(n))\right] =\textrm{Tr}\left[ {{\textbf {K}}}_{vv}(n)\right] . \end{aligned}$$
(25)

Thus, taking the trace of both sides of (24) and using the definition in (25) yields

$$\begin{aligned} \xi (n+1)&=\xi (n)-2\mu \textrm{Tr}\left[ \tilde{{{\textbf {R}}}}_x(n) {{\textbf {G}}}(n) {{\textbf {K}}}_{vv}(n)\right] \nonumber \\&\quad +2\mu ^2\textrm{Tr}\left[ \tilde{{{\textbf {R}}}}_x(n){{\textbf {G}}}(n){{\textbf {K}}}_{vv}(n){{\textbf {G}}}(n)\tilde{{{\textbf {R}}}}_x(n)\right] \nonumber \\&\quad +\mu ^2\textrm{Tr}\left[ \tilde{{{\textbf {R}}}}_x(n){{\textbf {G}}}(n){{\textbf {K}}}_{vv}(n){{\textbf {G}}}(n)\right] \textrm{Tr}\left[ \tilde{{{\textbf {R}}}}_x(n)\right] \nonumber \\&\quad +\mu ^2\sigma _u^2 \textrm{Tr}\left[ {{\textbf {G}}}(n)\hat{{{\textbf {R}}}}_x(n){{\textbf {G}}}(n)\right] +\sigma _q^2 N. \end{aligned}$$
(26)

To proceed with the study of the MSD behaviour of PNLMS, we employ the following approximations

$$\begin{aligned} \textrm{Tr}\left[ \tilde{{{\textbf {R}}}}_x(n) {{\textbf {G}}}(n) {{\textbf {K}}}_{vv}(n)\right]&= \sum _{i=1}^N E\left[ v_i^2(n)\right] g_i(n) {\tilde{\sigma }}_x^2(n-i+1)\nonumber \\&\approx \frac{1}{N}{\tilde{\sigma }}_x^2(n) \textrm{Tr}\left[ {{\textbf {G}}}(n)\right] \xi (n), \end{aligned}$$
(27)
$$\begin{aligned} \textrm{Tr}\left[ \tilde{{{\textbf {R}}}}_x(n){{\textbf {G}}}(n){{\textbf {K}}}_{vv}(n){{\textbf {G}}}(n)\tilde{{{\textbf {R}}}}_x(n)\right]&=\sum _{i=1}^NE\left[ v_i^2(n)\right] g_i^2(n){\tilde{\sigma }}_x^4(n-i+1)\nonumber \\&\approx \frac{1}{N}{\tilde{\sigma }}_x^4(n)\textrm{Tr}\left[ {{\textbf {G}}}^2(n)\right] \xi (n), \end{aligned}$$
(28)
$$\begin{aligned} \textrm{Tr}\left[ \tilde{{{\textbf {R}}}}_x(n){{\textbf {G}}}(n){{\textbf {K}}}_{vv}(n){{\textbf {G}}}(n)\right]&= \sum _{i=1}^N E\left[ v_i^2(n)\right] g_i^2(n) {\tilde{\sigma }}_x^2(n-i+1)\nonumber \\&\approx \frac{1}{N}{\tilde{\sigma }}_x^2(n) \textrm{Tr}\left[ {{\textbf {G}}}^2(n)\right] \xi (n), \end{aligned}$$
(29)
$$\begin{aligned} \textrm{Tr}\left[ {{\textbf {G}}}(n)\hat{{{\textbf {R}}}}_x(n){{\textbf {G}}}(n)\right]&= \sum _{i=1}^N g_i^2(n) {\hat{\sigma }}_x^2(n-i+1)\nonumber \\&\approx {\hat{\sigma }}_x^2(n) \textrm{Tr}\left[ {{\textbf {G}}}^2(n)\right] . \end{aligned}$$
(30)

Substituting (27)–(30) into (26) gives

$$\begin{aligned} \xi (n+1)&=s_1(n) \xi (n)+ s_2(n) \end{aligned}$$
(31)

where

$$\begin{aligned} s_1(n)&=1-2\frac{\mu }{N}{\tilde{\sigma }}_x^2(n)\textrm{Tr}\left[ {{\textbf {G}}}(n)\right] +\frac{\mu ^2}{N}(N+2){\tilde{\sigma }}_x^4(n)\textrm{Tr}\left[ {{\textbf {G}}}^2(n)\right] ,\end{aligned}$$
(32)
$$\begin{aligned} s_2(n)&=\mu ^2\sigma _u^2 {\hat{\sigma }}_x^2(n)\textrm{Tr}\left[ {{\textbf {G}}}^2(n)\right] +N\sigma _q^2. \end{aligned}$$
(33)

Equation (31) provides a recursion for MSD of the PNLMS algorithm for both time-invariant and time-varying systems.

1.2 Steady-State Analysis

Proceeding with (31), the steady-state MSD is given by

$$\begin{aligned} \xi _{\textrm{ss}}=\lim _{n\xrightarrow {}\infty }\xi (n)=\frac{s_2}{1-s_1} \end{aligned}$$
(34)

where

$$\begin{aligned} s_1&=\lim _{n\xrightarrow {}\infty }s_1(n)=1-2\frac{\mu }{N}{\tilde{\sigma }}_x^2\textrm{Tr}\left[ {{\textbf {G}}}_\text {ss}\right] +\frac{\mu ^2}{N}(N+2){\tilde{\sigma }}_x^4\textrm{Tr}\left[ {{\textbf {G}}}_\text {ss}^2\right] ,\\ s_2&=\lim _{n\xrightarrow {}\infty }s_2(n)=\mu ^2\sigma _u^2{\hat{\sigma }}_x^2\textrm{Tr}\left[ {{\textbf {G}}}_\text {ss}^2\right] +N\sigma _q^2 \end{aligned}$$

and the matrix \({{\textbf {G}}}_\text {ss}\) denotes the steady-state value of \({{\textbf {G}}}(n)\). In addition, \({\tilde{\sigma }}_x^2\) and \({\hat{\sigma }}_x^2\) are the steady-state values of \({\tilde{\sigma }}_x^2(n)\) and \({\hat{\sigma }}_x^2(n)\).

Appendix B: Derivation of the Step-Size of VSS-PNLMS

For the estimation of the steady-state MSD, \(\xi _{\textrm{ss}}\), of PNLMS in (34), \({{\textbf {G}}}_\text {ss}\) is required. Taking into account the fact that \({{\textbf {G}}}_\text {ss}\) is unknown during the convergence of the PNLMS algorithm, the updates of \({{\textbf {G}}}(n)\) at \(n_i\) could be used. Thus we define

$$\begin{aligned} \xi _{\textrm{ss},i+1}= \frac{s_{2}(n_{i})}{1-s_{1}(n_{i})},~~ {i=1,\ldots , K-1}. \end{aligned}$$
(35)

Assuming \(\sigma _q^2=0\), and substituting (32) and (33) into (35) for \(i=1,\ldots , K-1\) and \(n_{i-1}< n\le n_i\), yields

$$\begin{aligned} \xi _{\textrm{ss},i+1}&=\frac{N\mu (n)\sigma _u^2{\hat{\sigma }}_x^2(n_{i})/{\tilde{\sigma }}_x^2(n_{i})}{2\textrm{Tr}\left[ {{\textbf {G}}}(n_{i})\right] / \textrm{Tr}\left[ {{\textbf {G}}}^2(n_{i})\right] -(N+2)\mu (n){\tilde{\sigma }}_x^2(n_{i})}, \end{aligned}$$
(36)

subject to the fact that the denominator term in (36) should be positive. As a consequence, the following upper bound for step-size is derived:

$$\begin{aligned} \mu (n) < \frac{2\textrm{Tr}\left[ {{\textbf {G}}}(n_{i}) \right] }{(N+2){\tilde{\sigma }}_x^2(n_{i}) \textrm{Tr}\left[ {{\textbf {G}}}^2(n_{i}) \right] }. \end{aligned}$$

In addition, similar to the derivation of (35) and using (36), \(\xi _{\textrm{ss},1}\) can be defined as

$$\begin{aligned} \xi _{\textrm{ss},1}= \frac{s_{2}(0)}{1-s_{1}(0)}=\frac{N\mu _1\sigma _u^2{\hat{\sigma }}_x^2(0)/{\tilde{\sigma }}_x^2(0)}{2\textrm{Tr}\left[ {{\textbf {G}}}(0)\right] / \textrm{Tr}\left[ {{\textbf {G}}}^2(0)\right] -(N+2)\mu _1{\tilde{\sigma }}_x^2(0)}. \end{aligned}$$
(37)

Thus, assuming \({{\textbf {G}}}(0)= {{\textbf {I}}}/N\), (37) is simplified to

$$\begin{aligned} \xi _{\textrm{ss},1}&=\frac{N\mu _1\sigma _u^2{\hat{\sigma }}_x^2(0)/{\tilde{\sigma }}_x^2(0)}{2N-(N+2)\mu _1{\tilde{\sigma }}_x^2(0)}. \end{aligned}$$

Therefore, knowing \(\xi _{\textrm{ss}}\) and \(\xi _{\textrm{ss,1}}\), the value of \(\xi _{\textrm{ss},i}\) and accordingly, \(n_i\) for all transients will be calculated using (7) and (8), respectively.

Solving (36) for \(\mu (n)\), yields

$$\begin{aligned} \mu (n)=\frac{2\xi _{\textrm{ss},{i+1}} \textrm{Tr}\left[ {{\textbf {G}}}(n_i)\right] / \textrm{Tr}\left[ {{\textbf {G}}}^2(n_i)\right] }{N\sigma _u^2{\hat{\sigma }}_x^2(n_i)/{\tilde{\sigma }}_x^2(n_i)+(N+2) {\tilde{\sigma }}_x^2(n_i)\xi _{\textrm{ss},{i+1}}}. \end{aligned}$$

Besides, in time-varying scenarios when \(\sigma _q^2\ne 0\), in a similar manner, substituting (32) and (33) into (35) and solving (35) for \(\mu (n)\) in the interval \(n_{i-1}<n\le n_i\) and \(i=2,\ldots ,K\), yields

$$\begin{aligned} \mu (n)&=\frac{ \xi _{\textrm{ss},{i+1}} \textrm{Tr}\left[ {{\textbf {G}}}(n_i)\right] + \sqrt{ \xi _{\textrm{ss},i}^2 \textrm{Tr}\left[ {{\textbf {G}}}(n_i)\right] ^2 - N^2\frac{\sigma _q^2}{{\tilde{\sigma }}_x^2(n_i)}\textrm{Tr}\left[ {{\textbf {G}}}^2(n_i)\right] c(n_i)} }{\textrm{Tr}\left[ {{\textbf {G}}}^2(n_i)\right] c(n_i)} \end{aligned}$$

where

$$\begin{aligned} c(n_i)= N \frac{\sigma _u^2{\hat{\sigma }}_x^2(n_i)}{ {\tilde{\sigma }}_x^2(n_i)} +(N+2){\tilde{\sigma }}_x^2(n_i) \xi _{\textrm{ss},{i+1}}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohagheghian Bidgoli, Z., Bekrani, M. A Switching-Based Variable Step-Size PNLMS Adaptive Filter for Sparse System Identification. Circuits Syst Signal Process 43, 568–592 (2024). https://doi.org/10.1007/s00034-023-02490-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02490-4

Keywords

Navigation