Skip to main content
Log in

A Modified Anisotropic Diffusion Scheme for Signal-Dependent Noise Filtering

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Image processing is an important area to bring out the best in an image for human interpretation. This process has been widely used in various fields such as machine vision, remote sensing image analysis, medical diagnosis, image restoration, image pattern recognition, and video processing. During the acquisition and transmission of digital images, several random signals, known as noise, can affect image quality. To reduce or to remove efficiently the noise in the acquired or transmitted images, various image denoising techniques can be applied. The performance of denoising methods increases progressively when the noise parameters are taken into account as input parameters. Traditional denoising approaches adopt some assumptions to model noise, such noise is known as purely additive or multiplicative, pixel-independent, and channel-invariant. Usually, these assumptions limit the denoising effect due to inaccurate estimation of noise parameters in these algorithm models. However, the real noise model is signal-dependent and even device-dependent. In this paper, a new denoising method called signal-dependant noise-reducing anisotropic diffusion is developed, which is a version of the speckle reducing anisotropic diffusion (SRAD) filter. It differs from the standard SRAD filter approach by the insertion of a suitable noise parameters estimation framework. The new filter is designed to handle a variety of images corrupted by several common types of signal-dependent noises that are produced by charge-coupled device sensors. As well as it offers great potential for denoising with preserving textures and fine details. Extensive experiments demonstrate a significant increase in the image denoising performance in terms of SNR and RMSE. Qualitative (visual) results underline the efficacy of the proposed algorithm for filtering mixed signal-dependent noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. V.V. Abramova, S.K. Abramov, V.V. Lukin et al., On required accuracy of mixed noise parameter estimation for image enhancement via denoising. J. Image Video Proc. (2014). https://doi.org/10.1186/1687-5281-2014-3

    Article  Google Scholar 

  2. S. Abramov, V. Zabrodina, V. Lukin, B. Vozel, K. Chehdi, J. Astola, Improved method for blind estimation of the variance of mixed noise using weighted LMS line fitting algorithm, in Proceedings of 2010 IEEE International Symposium on Circuits and Systems, Paris, France, pp. 2642–2645 (2010). https://doi.org/10.1109/ISCAS.2010.5537084.

  3. H. Aetesam, S.K. Maji, Noise dependent training for deep parallel ensemble denoising in magnetic. Biomed. Signal Process. Control (2021). https://doi.org/10.1016/j.bspc.2020.102405.66(4)

    Article  Google Scholar 

  4. C. Aguerrebere, J. Delon, Y. Gousseau, P. Musé, Study of the digital camera acquisition process and statistical modeling of the sensor raw data. hal-00733538, (2013).

  5. B. Aiazzi, L. Alparone, S. Baronti, M. Selva, L. Stefani, Unsupervised estimation of signal-dependent CCD camera noise. EURASIP J. Adv. 231, 1–11 (2012)

    Google Scholar 

  6. S. Aja-Fernandez, C. Alberola-Lopez, On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering. IEEE Trans. Image Process. 15(9), 2694–2701 (2006). https://doi.org/10.1109/TIP.2006.877360

    Article  PubMed  ADS  Google Scholar 

  7. S. Aja-Fernandez, Detail preserving anosotropic diffusion for speckle filtering (DPAD) (https://www.mathworks.com/matlabcentral/fileexchange/36906-detail-preserving-anosotropic-diffusion-for-speckle-filtering-dpad), MATLAB Central File Exchange. Retrieved September 21, (2023).

  8. P. Arbelaez, C. F. Retrieved from The Berkeley Segmentation Dataset and Benchmark: https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/ (2007).

  9. C. Arboleda, Z. Wang, M. Stampanoni, Wavelet-based noise-model driven denoising algorithm for differential phase contrast mammography. Opt. Express 21(9), 10572–10589 (2013). https://doi.org/10.1364/OE.21.010572

    Article  PubMed  ADS  Google Scholar 

  10. L. Ayala-Domínguez, R.M. Oliver, L.A. Medina, M.-E. Brandan, Design of a bilateral filter for noise reduction in contrast-enhanced micro-computed tomography. AIP Conf. Proc. 2348, 040002 (2021). https://doi.org/10.1063/5.0051272

    Article  Google Scholar 

  11. L. Azzari, A. Foi, Gaussian–Cauchy mixture modeling for robust signal-dependent noise estimation, in IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP), p. 5357–5361 (2014).

  12. M. Baraka, Nonlinear anisotropic diffusion methods for image denoising problems: challenges and future research opportunities. Array (2022). https://doi.org/10.1016/j.array.2022.100265

    Article  Google Scholar 

  13. M. Ben Abdallah, J. Malek, A.A. Taher, H. Belmabrouk, J.E. Monreal, K. Krissian, Adaptive noise-reducing anisotropic diffusion filter. Nat. Comput. Appl. 27(5), 1273–1300 (2015)

    Google Scholar 

  14. M. BenAbdallah, A.A. Taher, H. Guedri, J. Malek, H. Belmabrouk, Noise-estimation-based anisotropic diffusion approach for retinal blood vessel segmentation. Neural Comput. Appl. 29(8), 159–180 (2018). https://doi.org/10.1007/s00521-016-2811-9

    Article  Google Scholar 

  15. K. Bnou, S. Raghay, A. Hakim, A wavelet denoising approach based on unsupervised learning model. EURASIP J. Adv. Signal Process. (2020). https://doi.org/10.1186/s13634-020-00693-

    Article  Google Scholar 

  16. R.A. Boie, I.J. Cox, An analysis of camera noise. IEEE Trans. Pattern Anal. Mach. Intell. 145(6), 671–674 (1992). https://doi.org/10.1109/34.141557

    Article  Google Scholar 

  17. P. Bouboulis, K. Slavakis, S. Theodoridis, Adaptive kernel-based image denoising employing semi-parametric regularization. IEEE Trans. Image Process. 19(6), 1465–1479 (2010). https://doi.org/10.1109/TIP.2010.2042995

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  18. A. Buades, Non-local algorithm for image denoising. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2, 60–65 (2005)

    Google Scholar 

  19. A. Buades, B. Coll, J.-M. Morel, A review of image denoising algorithms, with a new one. SIAM Interdiscip. J. 4, 490–530 (2005)

    MathSciNet  Google Scholar 

  20. S.G. Chang, B. Yu, M. Vetterli, Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Process. 9(9), 1532–1546 (2000). https://doi.org/10.1109/83.862633

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  21. P. Chatterjee, P. Milanfar, Clustering-based denoising with locally learned dictionaries. IEEE Trans. Image Process. 18, 1438–1451 (2009)

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  22. H. Choi, J. Jeong, Speckle noise reduction technique for SAR images using statistical characteristics of speckle noise and discrete wavelet transform. Remote Sens. 11, 1184 (2019). https://doi.org/10.3390/rs11101184

    Article  ADS  Google Scholar 

  23. H. Chun, K. Guo, H. Chen, An improved image filtering algorithm for mixed noise. Appl. Sci. 11(21), 10358 (2021). https://doi.org/10.3390/app112110358

    Article  CAS  Google Scholar 

  24. K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, Image denoising with block-matching and 3D filtering. Proc. SPIE (2006). https://doi.org/10.1117/12.643267

    Article  Google Scholar 

  25. T. Dai, Y. Zhang, L. Dong, L. Li, X. Liu, S. Xia, Content-aware bilateral filtering, in IEEE Fourth International Conference on Multimedia Big Data (BigMM), Xi'an, China, 1–6 (2018). https://doi.org/10.1109/BigMM.2018.8499063.

  26. J. Delon, A. Houdard, Gaussian priors for image denoising of photographic images and video: fundamentals, open challenges and new trends, 319-96029-6, 978-3-319-96029-6 (2018).

  27. K.T. Dilna, D.J. Hemanth, Novel image enhancement approaches for despeckling in ultrasound images for fibroid detection in human uterus. Open Comput. Sci. 2021(11), 399–410 (2021)

    Article  Google Scholar 

  28. M. Elad, M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736 (2006)

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  29. A. El Gamal, H. Eltoukhy, CMOS image sensors. IEEE Circuits Devices Mag. 21(3), 6–20 (2005)

    Article  Google Scholar 

  30. L. Fan, F. Zhang, H. Fan, C. Zhang, Brief review of image denoising techniques. Vis. Comput. Ind. Biomed. Art 2, 7 (2019). https://doi.org/10.1186/s42492-019-0016-7

    Article  PubMed  PubMed Central  Google Scholar 

  31. H. Faraji, W.J. Maclean, CCD noise removal in digital images. IEEE Trans. Image Process. (2006). https://doi.org/10.1109/TIP.2006.877363.2676-2685

    Article  PubMed  Google Scholar 

  32. X. Feng, Z. Pan, Detail enhancement for infrared images based on relativity of gaussian-adaptive bilateral filter. OSA Continuum 4(10), 2671–2686 (2021). https://doi.org/10.1364/OSAC.434858

    Article  Google Scholar 

  33. A. Foi, M. Trimeche, V. Katkovnik, K. Egiazarian, Senior member, IEEE, (2007). Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data. IEEE Transactions, TIP-03364-2007-FINAL, 1–18 (2007).

  34. J. Fridrich, Digital image forensics. IEEE Signal Process. Mag. 26(2), 26–37 (2009). https://doi.org/10.1109/MSP.2008.931078

  35. V.S. Frost, J.A. Stiles, K.S. Shanmugan, J.C. Holtzman, A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans. Pattern Anal. Mach. Intell. 4(2), 157–166 (1982). https://doi.org/10.1109/tpami.1982.4767223

    Article  CAS  PubMed  Google Scholar 

  36. M. Gao, B. Kang, X. Feng, W. Zhang, W. Zhang, Anisotropic diffusion based multiplicative speckle noise removal. Sensors 19(14), 3164 (2019). https://doi.org/10.3390/s19143164

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  37. M. Gatcha, F. Messelmi, S. Saadi, An anisotropic diffusion adaptive filter for image denoising and restoration applied on satellite remote sensing images: a case study. Eng. Technol. Appl. Sci. Res. 12(6), 9715–9719 (2022). https://doi.org/10.48084/etasr.5363

    Article  Google Scholar 

  38. M. Gharbi, C. Gaurav, S. Paris, F. Durand, Deep joint demosaicking and denoising. ACM Trans. Graph. 35, 1–12 (2016)

    Article  Google Scholar 

  39. R.C. Gonzalez, R.E. Woods, Digital Image Processing, 3rd edn. (PrenticeHall Inc, Upper Saddle River, 2006)

    Google Scholar 

  40. N. Guizard, K. Nakamura, V.S. Fonov, D.L. Arnold, D.L. Collins, Non-local means inpainting of MS lesions in longitudinal image processing. Front. Neurosci. 9, 456 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  41. B. Guo, K. Song, H. Dong, Y. Yan, Z. Tu, L. Zhu, NERNet: Noise estimation and removal network for image denoising. J. Vis. Commun. Image Represent. 71, 1047–3203 (2020). https://doi.org/10.1016/j.jvcir.2020.102851

    Article  Google Scholar 

  42. R.M. Haralick, L.G. Shapiro, Image segmentation techniques. Comput. Vis. Graph. Image Process. 29, 100–132 (1985). https://doi.org/10.1016/S0734-189X(85)90153-7

    Article  Google Scholar 

  43. G.E. Healey, R. Kondepudy, Radiometric CCD camera calibration and noise estimation. IEEE Trans. Pattern Anal. Mach. Intell. 16(3), 267–276 (1994)

    Article  Google Scholar 

  44. K. Huang, H. Zhu, Image noise removal method based on improved nonlocal mean algorithm. Complexity, Hindawi (2021). https://doi.org/10.1155/2021/5578788

  45. C. Hyunho, J. Jechang, Speckle noise reduction technique for SAR images using SRAD and gradient domain guided image filtering, in International Workshop on Advanced Imaging Technology (IWAIT) 2020. https://doi.org/10.1117/12.2566244 (2020).

  46. K. Irie, A.E. McKinnon, K. Unsworth, I.M. Woodhead, A technique for evaluation of CCD video-camera noise. IEEE Trans. Circuits Syst. Video Technol. 18(2), 280–284 (2008). https://doi.org/10.1109/TCSVT.2007.913972

    Article  Google Scholar 

  47. Y. Jiang, H. Wang, Y. Cai, B. Fu, Salt and pepper noise removal method based on the edge-adaptive total variation model. Front. Appl. Math. Stat. (2022). https://doi.org/10.3389/fams.2022.918357

    Article  Google Scholar 

  48. Q. Jin, I. Grama, C. Kervrann, Q. Liu, Nonlocal means and optimal weights for noise removal. SIAM J. Imag. Sci. 10(4), 1878–1920 (2017)

    Article  MathSciNet  Google Scholar 

  49. P.L. Joseph Raj, K. Kalimuthu, S. Gauni, C.T. Manimegalai, Extended speckle reduction anisotropic diffusion filter to despeckle ultrasound images. Intell. Autom. Soft Comput. 34(2), 1187–1196 (2022). https://doi.org/10.32604/iasc.2022.026052

    Article  Google Scholar 

  50. N. Joshi and S. Jain, An improved anisotropic diffusion filtering approach for noise reduction in MRI, in 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India, pp. 1–5 (2021). https://doi.org/10.1109/ICRITO51393.2021.9596244.

  51. K. Krissian, C.F. Westin, R. Kikinis, K.G. Vosburgh, Oriented speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 16(5), 1412–1424 (2007). https://doi.org/10.1109/tip.2007.891803

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  52. D. Kuan, A. Sawchuk, T. Strand, P. Chavel, Adaptive restoration of images with speckle. IEEE Trans. Acoust. Speech Signal Process. 35, 373–383 (1987)

    Article  ADS  Google Scholar 

  53. N. Kumar, A.K. Dahiya, K. Kumar, Modified median filter for image denoising. Int. J. Adv. Sci. Technol. 29(4), 1495–1502 (2020)

    Google Scholar 

  54. J.S. Lee, Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Mach. Intell. 2(2), 165–168 (1980). https://doi.org/10.1109/TPAMI.1980.4766994

    Article  CAS  PubMed  ADS  Google Scholar 

  55. J. Li, Y. Wu, Y. Zhang, J. Zhao, Y. Si, Parameter estimation of Poisson–Gaussian signal-dependent noise from single image of CMOS/CCD image sensor using local binary cyclic jumping. MDPI Sens. 21(24), 8330 (2021). https://doi.org/10.3390/s21248330

    Article  Google Scholar 

  56. Y. Li, Z. Li, K. Wei, W. Xiong, J. Yu, B. Qi, Noise estimation for image sensor based on local entropy and median absolute deviation. Sensors 19(2), 339 (2019). https://doi.org/10.3390/s19020339

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  57. Y. Li, C. Liu, X. You, J. Liu, A single-image noise estimation algorithm based on pixel-level low-rank low-texture patch and principal component analysis. Sensors 22, 8899 (2022). https://doi.org/10.3390/s22228899

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  58. Y. Li, et al., NTIRE 2023 challenge on image denoising: methods and results, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), p. 1904–1920 (2023).

  59. C. Liu, R. Szeliski, S. Bing Kang, C. Lawrence Zitnick, W.T. Freeman, Automatic estimation and removal of noise from a single. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 299–314 (2008)

    Article  CAS  PubMed  Google Scholar 

  60. C. Liu, W.T. Freeman, R. Szeliski, S.B. Kang, Noise estimation from a single image, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), New York, NY, USA. 207, p. 901–908 (2006). https://doi.org/10.1109/CVPR.

  61. S. Liu et al., SAR speckle removal using hybrid frequency modulations. IEEE Trans. Geosci. Remote Sens. 59(5), 3956–3966 (2021). https://doi.org/10.1109/TGRS.2020.3014130

    Article  ADS  Google Scholar 

  62. X. Liu, T. Masayuki, M. Okutomi, Estimation of signal dependent noise parameters from a single image. IEEE Int. Conf. Image Process. (2013). https://doi.org/10.1109/ICIP.2013.6738017

    Article  Google Scholar 

  63. X. Liu, M. Tanaka, M. Okutomi, Single-image noise level estimation for blind denoising. IEEE Trans. Image Process. 22(12), 5226–5237 (2013). https://doi.org/10.1109/TIP.2013.2283400

    Article  PubMed  ADS  Google Scholar 

  64. J. Lukáš, J. Fridrich, M. Goljan, Digital camera identification from sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 1(2), 205–214 (2005). https://doi.org/10.1109/TIFS.2006.873602

    Article  Google Scholar 

  65. O. Magud, E. Tuba, N. Bacanin, Medical ultrasound image speckle noise reduction by adaptive median filter. Wseas Trans. Biol. Biomed. 14, 38–46 (2017)

    Google Scholar 

  66. B. Maiseli, Nonlinear anisotropic diffusion methods for image denoising problems: challenges and future research opportunities. Array (2023). https://doi.org/10.1016/j.array.2022.100265

    Article  Google Scholar 

  67. S. Mohammadnejad, S. Roshani, M.N. Sarvi, Fixed pattern noise reduction method in CCD sensors for LEO satellite applications, in 11th International Conference on Telecommunications—ConTEL 2011, p. 15–17 (2011).

  68. J. Nakamura, Image Sensors and Signal Processing for Digital Still Cameras (CRC Press, Boca Raton, 2006)

    Google Scholar 

  69. R.R. Nair, E. David, R. Sivakumar, A robust anisotropic diffusion filter with ow arithmetic complexity for images. EURASIP J. Image Video Process. 48, 2–14 (2019). https://doi.org/10.1186/s13640-019-0444-5

    Article  Google Scholar 

  70. M. Niemeijer, J. Staal, B.V. Ginneken, M. Loog, M.D. Abràmoff, Comparative study of retinal vessel segmentation methods on a new publicly available database. in J.M. Fitzpatrick, M. Sonka. Retrieved from https://drive.grand-challenge.org/ (2004).

  71. J. Nyunt, Y. Sugiura, T. Shimamura, Noise level estimation on weak-texture image patch with image power spectrum sparsity. J. Signal Process. 23(3), 95–103 (2019). https://doi.org/10.2299/jsp.23.95

    Article  Google Scholar 

  72. S. Panchacharam, M. Giriprasad, An image enhancement approach to achieve high speed using adaptive modified bilateral filter for satellite images using FPGA. TELKOMNIKA Telecommun. Comput. Electron. Control 15(4), 1766–1775 (2017). https://doi.org/10.12928/TELKOMNIKA.v15i4.3457

    Article  Google Scholar 

  73. S. Paris, P. Kornprobst, J. Tumblin, F. Durand, Bilateral filtering: theory and applications. Found. Trends Comput. Graph. Vis. 4(1), 1–73 (2008). https://doi.org/10.1561/0600000020

    Article  Google Scholar 

  74. P. Perona, J. Malik, Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  75. W.K. Pratt, Generalized Wiener filtering computation techniques. IEEE Trans. Comput. 21(7), 636–641 (1972). https://doi.org/10.1109/T-C.1972.223567

    Article  Google Scholar 

  76. S. Pyatykh, J. Hesser, L. Zheng, Image noise level estimation by principal component analysis. IEEE Trans. Image Process. 22(2), 687–699 (2013). https://doi.org/10.1109/TIP.2012.2221728

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  77. M. Raitoharju, H. Nurminen, D. Cilden-Guler, S. Särkkä, Kalman filtering with empirical noise models. Applications (2021). https://doi.org/10.48550/arXiv.2105.08514

  78. D. Sage, M. Unser, Teaching image-processing programming in Java. IEEE Signal Process. Mag. 20(6), 43–52 (2003)

    Article  ADS  Google Scholar 

  79. U. Sakoglu, R.C. Hardie, M.M. Hayat, B.M. Ratlif, J. Scott Tyo, An algebraic restoration method for estimating fixed-pattern noise in infrared imagery from a video sequence, in Applications of Digital Image Processing XXVII, 5558, 69–79 (2004).

  80. L. Shuaiqi, Q. Hu, P. Li, J. Zhao, M. Liu, Z. Zhu, Speckle suppression based on weighted nuclear norm minimization and grey theory. IEEE Trans. Geosci. Remote Sens. 57, 2700–2708 (2019)

    Article  ADS  Google Scholar 

  81. H. Si, Z. Wei, Z. Zhu, H. Chen, D. Liang, W. Wang, M. Wei. LBF: learnable bilateral filter for point cloud denoising, in Computer Vision and Pattern Recognition (cs.CV) (2022).

  82. H. Singh, S.V.R. Kommuri, A. Kumar, V. Bajaj, A new technique for guided filter based image denoising using modified cuckoo search optimization. Expert Syst. Appl. (2021). https://doi.org/10.1016/j.eswa.2021.114884

    Article  PubMed  PubMed Central  Google Scholar 

  83. O. Skorka, D. Joseph, Design and fabrication of vertically-integrated CMOS image sensors. Sensors (2011). https://doi.org/10.3390/s110504512

    Article  PubMed  PubMed Central  Google Scholar 

  84. V. Stojanovic, N.N. Nedic, Joint state and parameter robust estimation of stochastic nonlinear systems. Int. J. Robust Nonlinear Control (2015). https://doi.org/10.1002/rnc.3490

    Article  Google Scholar 

  85. V. Stojanovic, N.N. Nedic, Robust Kalman filtering for nonlinear multivariable stochastic systems in the presence of non-Gaussian noise. Int. J. Robust Nonlinear Control (2015). https://doi.org/10.1002/rnc.3319

    Article  Google Scholar 

  86. V. Stojanovic, V. Filipovic, Adaptive input design for identification of output error model with constrained. Circuits Syst. Signal Process. 33, 97–113 (2014). https://doi.org/10.1007/s00034-013-9633-0

    Article  MathSciNet  Google Scholar 

  87. Y. Sun, L. Lei, D. Guan, X. Li, G. Kuang, SAR image speckle reduction based on nonconvex hybrid total variation model. IEEE Trans. Geosci. Remote Sens. 59(2), 1231–1249, (2020). https://doi.org/10.1109/TGRS.2020.3002561

    Article  ADS  Google Scholar 

  88. A. Suneetha, E.S. Reddy, Robust Gaussian noise detection and removal in color images using modified fuzzy set filter. J. Intell. Syst. (2020). https://doi.org/10.1515/jisys-2019-0211

    Article  Google Scholar 

  89. M. Tanaka, Noise Level Estimation from a Single Image (https://www.mathworks.com/matlabcentral/fileexchange/36921-noise-level-estimation-from-asingle-image), MATLAB Central File Exchange. Retrieved September 22, (2023).

  90. K.V. Thakur, O.H. Damodare, A.M. Sapkal, Poisson noise reducing bilateral filter, in 7th International Conference on Communication, Computing and Virtualization, 2016, p. 861–865 (2016). https://doi.org/10.1016/j.procs.2016.03.087.

  91. N. Thakur, N.U. Khan, S.D. Sharma, A review on performance analysis of PDE based anisotropic approaches for image enhancement. Informatica (2020). https://doi.org/10.31449/inf.v45i6.3333

    Article  Google Scholar 

  92. T.H. Thai, F. Retraint, R. Cogranne, Generalized signal-dependent noise model and parameter estimation for natural images. Signal Process. (2015). https://doi.org/10.1016/j.sigpro.2015.02.020

    Article  Google Scholar 

  93. S. Thayammal, G. Sankaramalliga, S. Priyadarsini, K. Ramalakshmi, Performance analysis of image denoising using deep convolutional neural network. IOP Conf. Ser. Mater. Sci. Eng. (2021). https://doi.org/10.1088/1757-899X/1070/1/012085

    Article  Google Scholar 

  94. C. Tian, L. Fei, W. Zheng, Y. Xu, W. Zuo, C.-W. Lin, Deep learning on image denoising: an overview. Neural Netw. (2020). https://doi.org/10.1016/j.neunet.2020.07.025,131,251-275

    Article  PubMed  Google Scholar 

  95. H. Tian, B. Fowler, A. El Gamal, Analysis of temporal noise in CMOS photodiode active pixel sensor. IEEE J. Solid-State Circuits 36(1), 92–101 (2001)

    Article  ADS  Google Scholar 

  96. M. Tiwari, B. Gupta, Image denoising using spatial gradient based bilateral filter and minimum mean square error filtering. Procedia Comput. Sci. 54, 638–645 (2015). https://doi.org/10.1016/j.procs.2015.06.074

    Article  Google Scholar 

  97. C. Tomasi, R. Manduchi, Bilateral filtering for gray and color images, in Proceedings of the 1998 IEEE International Conference on Computer Vision, Bombay, India, p. 839–846 (1998). https://doi.org/10.1109/ICCV.1998.710815.

  98. G. Torricelli, F. Argenti, L. Alparone, Modelling and assessment of signal-dependent noise for image de-noising, in 11th European Signal Processing Conference (2002). https://doi.org/10.5281/ZENODO.38005 (2002).

  99. L.A. Tran, Image Processing Course Project: Image Filtering with Wiener Filter and Median Filter (2019).https://doi.org/10.13140/RG.2.2.15700.65921

  100. Y. Tsin, V. Ramesh, T. Kanade, Statistical calibration of CCD imaging process, in Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, 1, p. 480–487 (2001).

  101. N. Upadhyay, R.K. Jaiswal, Single channel speech enhancement: using wiener filtering with recursive noise estimation. Procedia Comput. Sci. 84, 22–30 (2016). https://doi.org/10.1016/j.procs.2016.04.061

    Article  Google Scholar 

  102. F. Wagner, M. Thies, M. Gu, Y. Huang, S. Pechmann, M. Patwari, S. Ploner, O. Aust, S. Uderhardt, G. Schett, S. Christiansen, A. Maier, Ultralow-parameter denoising: trainable bilateral filter layers in computed tomography. Med. Phys. 47, 5107–5120 (2022). https://doi.org/10.1002/mp.15718

    Article  Google Scholar 

  103. J. Xiao, H. Tian, Y. Zhang, Y. Zhou, J. Lei, Blind video denoising via texture-aware noise estimation. Comput. Vis. Image Underst. 169, 1–13 (2018). https://doi.org/10.1016/j.cviu.2017.11.012

    Article  Google Scholar 

  104. S. Xu, X. Zeng, Y. Jiang, Y. Tang, A multiple image-based noise level estimation algorithm. IEEE Signal Process. Lett. 24(11), 1701–1705 (2017). https://doi.org/10.1109/LSP.2017.2755687

    Article  ADS  Google Scholar 

  105. T. Yang, B. Xu, B. Zhou, W. Wei, A nonlinear diffusion model with smoothed background estimation to enhance degraded images for defect detection. Appl. Sci. 13, 211 (2023). https://doi.org/10.3390/app13010211

    Article  CAS  Google Scholar 

  106. H. Yao, M. Zou, C. Qin, X. Zhang, Signal-dependent noise estimation for a real-camera model via weight and shape constraints. IEEE Trans. Multimed. 24, 640–654 (2022). https://doi.org/10.1109/TMM.2021.3056879

    Article  Google Scholar 

  107. L. Yu. Image noise preprocessing of interactive projection system based on switching filtering scheme. Hindawi, 1076–2787 (2018). https://doi.org/10.1155/2018/1258306

  108. Y. Yu, S.T. Acton, Speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 11(11), 1260–1270 (2002). https://doi.org/10.1109/TIP.2002.804276

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  109. Y. Yu, S.T. Acton, Edge detection in ultrasound imagery using the instantaneous coefficient of variation. IEEE Trans. Image Proccess. 13(12), 1640–1655 (2004)

    Article  ADS  Google Scholar 

  110. M. Zhang, B.K. Gunturk, Multiresolution bilateral filtering for image denoising. IEEE Trans. Image Process. 17(12), 2324–2333 (2008). https://doi.org/10.1109/TIP.2008.2006658

    Article  MathSciNet  PubMed  PubMed Central  ADS  Google Scholar 

  111. G. Zhang, F. Guo, Q. Zhang, K. Xu, P. Jia, X. Hao, Speckle reduction by directional coherent anisotropic diffusion. Remote Sens. 11(23), 2768 (2019). https://doi.org/10.3390/rs11232768

    Article  ADS  Google Scholar 

  112. K. Zhang, W. Zuo, L. Zhang, FFDNet: toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image Process. 27(9), 4608–4622 (2018). https://doi.org/10.1109/TIP.2018.2839891

    Article  MathSciNet  ADS  Google Scholar 

  113. Q. Zhao, C. Debao, Improved weighted nonlocal mean algorithm filter for image. J. Electron. Meas. Instrum. 28(3), 334–339 (2014)

    Google Scholar 

  114. Y. Zhu, C. Huang, An improved median filtering algorithm for image noise reduction, in 2012 International Conference on Solid State Devices and Materials Science. Elsevier, 25, 609–616 (2012).

  115. M. Zou, H. Yao, C. Qin, X. Zhang, Statistical analysis of signal-dependent noise: application in blind localization of image splicing forgery. Comput. Sci. Comput. Vis. Pattern Recognit. (2020).

Download references

Acknowledgements

The authors would like to thank Deanship of Scientific Research at Majmaah University for supporting this work under Project Number No. R-2023-577.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdullah Bajahzar or Hafedh Belmabrouk.

Ethics declarations

Conflict of Interest

No potential conflict of interest was reported by the authors.

Ethical Approval

Not applicable. The study does not involve humans or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Abdallah, M., Malek, J., Bajahzar, A. et al. A Modified Anisotropic Diffusion Scheme for Signal-Dependent Noise Filtering. Circuits Syst Signal Process 43, 2184–2223 (2024). https://doi.org/10.1007/s00034-023-02538-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02538-5

Keywords

Navigation