Skip to main content
Log in

CCCCTA-based Chua’s Circuit for Chaotic Oscillation

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This research article contributes a Chua’s diode implementation using a modern active block Current Controlled Current Conveyor Transconductance Amplifier (CCCCTA) with an active MOS transistor for electronically tunable feature. CCCCTA and MOS resistor are responsible for the variation in Chua’s diode characteristics and their performance is well studied with the help of dynamical aspects like dissipativity, invariance, bifurcation diagram, Lyapunov exponents, and basin of attraction. The proposed model has a hidden attractor with one unstable node equilibrium and two symmetric stable node equilibrium points. In addition to numerical simulation in MATLAB, the electronic circuit for the proposed Chua’s circuit is successfully verified in PSPICE and hardware implementation using commercially available ICs (AD844, CA3080). Chua’s traditional chaotic response (double scroll, Rossler, and large limit cycle) can be easily observed by: (i) adjusting the coupling resistor between two capacitor present in a Chua’s circuit, (ii) tuning the bias current of CCCCTA present in the proposed Chua’s diode, and (iii) by tuning the controlling voltage of MOS resistor (RMOS). The feasibility of the proposed work applies to Chaotic Amplitude Shift Keying (CASK) transmission. Finally, a comparative study is studied with the existing works of literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

No data was used for the research described in this article.

References

  1. B.C. Bao, Q.D. Li, N. Wang, Q. Xu, Multistability in Chua’s circuit with two stable node-foci Chaos. Interdisciplin. J. Nonlinear Sci. 26(4), 043111 (2016)

    Article  CAS  Google Scholar 

  2. V. Bhatt, A. Ranjan, Y.S. Singh, Resistorless Chua’s diode implementation for Chaotic oscillation employing single EXCCCII. AEU-Int. J. Electron. Commun. 156, 154398 (2022)

    Article  Google Scholar 

  3. H.P. Chen, Y.S. Hwang, Y.T. Ku, Voltage-mode and current-mode resistorless third-order quadrature oscillator. Appl. Sci. 7(2), 179 (2017)

    Article  ADS  Google Scholar 

  4. M. Chen, X. Quan, B. Bao, Hidden attractors in a practical Chua’s circuit based on a modified Chua’s diode. Electronics Letter 52(1), 23–25 (2015)

    ADS  Google Scholar 

  5. C.K. Choubey, S.K. Paul, Implementation of Chaotic oscillator by designing a simple Chua’s diode using a single VDTA. Int. J. Electron. Commun. 124, 153360 (2020)

    Article  Google Scholar 

  6. L.O. Chua, M. Komuro, T. Matsumoto, The double scroll family. IEEE Trans. Circ. Syst. 33(11), 1073–1118 (1986)

    Article  ADS  Google Scholar 

  7. E.T. Cuautle, A.G. Hernndez, Implementation of a chaotic oscillator by designing Chua’s diode with CMOS CFOAs. Analog Integr. Circ. Sig. Process 48(2), 159–162 (2006)

    Article  Google Scholar 

  8. G. Gandhi, An improved Chua’s circuit and its use in hyper chaotic circuit. Analog Int. Circ. Signal Process. 46(2), 173–178 (2006)

    Article  Google Scholar 

  9. P. Gaspard, Rossler systems. New York: Routledge (1st ed.), 808–814 (2005).

  10. K. Gopakumar, B. Premlet, K.G. Gopchandran, Implementation of Chua’s circuit usingsimulated inductance. Int. J. Electron. 98(5), 667–677 (2011)

    Article  Google Scholar 

  11. S. Jafari, A. Ahmadi, A.J.M. Khalaf, H.R. Abdolmohammadi, V.T. Pham, F.E. Alsaadi, A new hidden Chaotic attractor with extreme multi-stability. AEU – Int J. Electro. Commun. 89, 131–135 (2018)

    Article  Google Scholar 

  12. M.D. Johansyah, A new 3-D multistable Chaotic system with line equilibrium: dynamic analysis and synchronization. Int. J. Quant. Res. Model. 2(1), 55–66 (2021)

    Article  Google Scholar 

  13. M. Joshi, A. Ranjan, Investigation of dynamical properties in hysteresis-based a simple chaotic waveform generator with two stable equilibrium. Chaos Solitons Fractals 134, 109693 (2020)

    Article  MathSciNet  Google Scholar 

  14. M. Joshi, P. Mohit, A. Ranjan, N-th-order simple hyperjerk system with unstable equilibrium and its application as RPG. Circ. Syst. Signal Process. 40, 5913–5934 (2021)

    Article  Google Scholar 

  15. M.P. Kennedy, Robust op-amp realization of Chua’s circuit. Frequenz 46, 66–80 (1992)

    Article  ADS  Google Scholar 

  16. R. Kılıç, U. Cam, H. Kuntman, E. Uzunhisarcıklı, Realization of inductorless Chua’s circuit using FTFN-based nonlinear resistor and inductance simulator. Frequenz 58, 1–2 (2004)

    Google Scholar 

  17. N. Kumar, J. Vista, A. Ranjan, A tuneable active inductor employing DXCCTA: grounded and floating operation. Microelectron. J. 90, 1–11 (2019)

    Article  Google Scholar 

  18. A.K. Kushwaha, S.K. Paul, Inductorless realization of Chua’s oscillator using DVCCTA. Analog Integr. Circ. Sig. Process 88(1), 137–150 (2016)

    Article  Google Scholar 

  19. A.K. Kushwaha, S.K. Paul, Chua’s oscillator using operational transresistance amplifier. Rev. Roum. Sci. Techn. Électrotechn. Et Énerg. 61(3), 299–303 (2016)

    Google Scholar 

  20. G.A. Leonov, N.V. Kuznetsov, V.I. Vagaitsev, Localization of hidden Chuaʼs attractors. Phys. Lett. A 375(23), 2230–2233 (2011)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  21. T. Liu, H. Yan, S. Banerjee, J. Mou, A fractional-order chaotic system with hidden attractor and self-excited attractor and its DSP implementation. Chaos Solitons Fractals 145, 110791 (2021)

    Article  MathSciNet  Google Scholar 

  22. E.N. Lorenz, Deterministic non-periodic flow simple 4d chaotic oscillator. J. Atmos. Sci. 20, 130–141 (1963)

    Article  ADS  Google Scholar 

  23. A. Mishra, K. Sehra, S. Sahil, A. Joshi, P. Kasturi, M. Saxena, Memristor based cryptographic information processing for secured communication systems. In: 5th International Conference on Devices, Circuits and Systems (ICDCS), IEEE, Coimbatore, India, 167–171 (2020).

  24. O. Morgul, Inductorless realization of Chua oscillator. Electronics Letter 31(17), 1403–1404 (1995)

    Article  ADS  Google Scholar 

  25. L.N. Nguenjou, G. Kom, J.R.M. Pone, K. Jacques, A. Tiedeu, A window of multistability in Genesio-Tesi chaotic system, synchronization and application for securing information. AEU Int. J. Electron. Commun. 99, 201–214 (2019)

    Article  Google Scholar 

  26. V.T. Pham, C. Volos, S. Jafari, T. Kapitaniak, Coexistence of hidden Chaotic attractors in a novel no-equilibrium system. Nonlinear Dyn. 87(3), 2001–2010 (2017)

    Article  Google Scholar 

  27. V.T. Pham, S. Jafari, C. Volos, T. Kapitaniak, Different families of hidden attractors in a new chaotic system with variable equilibrium. Int. J. Bifurcation Chaos 27(9), 1750138 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  28. N. Pratyusha, S. Mandal, Design and Implementation of a Novel Circuit-Based Memristive Non-autonomous Hyperchaotic System with Conservative and Offset Boosting for Applications to Image Encryption. Circuits, Systems, and Signal Processing, 1–23 (2023).

  29. R. Senani, S. Gupta, Implementation of Chua’s chaotic circuit using current feedback opamp. Electronics Letter 34(9), 829–830 (1998)

    Article  ADS  Google Scholar 

  30. M. Siripruchyanun, P. Silapan, W. Jaikla, Realizatio of CMOS current controlled current convey or transconductance amplifier and its application. J. Active Passive Dev. 4, 35–53 (2009)

    Google Scholar 

  31. M. Siripruchyanun, W. Jaikla, Current controlled current conveyor transconductance amplifier (CCCCTA): a building block for analog signal processing. Electr. Eng. 90(6), 443–453 (2008)

    Article  Google Scholar 

  32. J.C. Sprott, A new chaotic jerk circuit. IEEE Trans. Circuits Syst. II(58), 240–243 (2011)

    Article  Google Scholar 

  33. N.V. Stankevich, N.V. Kuznetsov, G.A. Leonov, L.O. Chua, Scenario of the birth of hidden attractors in the Chua circuit. Int. J. Bifurcation Chaos 27(12), 1730038 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  34. L.A.B. Torres, L.A. Aguirre, Inductorless Chua’s circuit. Electronics Lett. 36(23), 1915–1916 (2000)

    Article  ADS  Google Scholar 

  35. N. Wang, G. Zhang, N.V. Kuznetsov, H. Bao, Hidden attractors and multistability in a modified Chua’s circuit. Commun. Nonlinear Sci. Numer. Simul. 92, 1–22 (2020)

    MathSciNet  CAS  Google Scholar 

  36. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Determining Lyapunov exponents from a time series. Physica D 16(3), 285–317 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  37. S. Zhang, C. Li, J. Zheng, X. Wang, Z. Zeng, X. Peng, Generating any number of initial offset-boosted coexisting chua’s double-scroll attractors via piecewise-nonlinear memristor. IEEE Trans. Industr. Electron. 69(7), 7202–7212 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Ranjan.

Ethics declarations

Conflict of interest

The authors declared that there is no competing interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatt, V., Ranjan, A. & Joshi, M. CCCCTA-based Chua’s Circuit for Chaotic Oscillation. Circuits Syst Signal Process 43, 2051–2072 (2024). https://doi.org/10.1007/s00034-023-02579-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02579-w

Keywords

Navigation