Skip to main content
Log in

Semi-global Interval Observer-Based Robust Control of Linear Time-Invariant Systems Subject to Input Saturation

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This article investigates the issue of robust control based on interval observers for continuous-time linear time-invariant (LTI) systems with input saturation and disturbances. Firstly, an interval observer is derived by resorting to the system’s output information and the interval bounds on the disturbances. Then, a parametric Lyapunov equation (PLE)-based low-gain feedback control method is introduced to guarantee semi-global boundedness. In contrast to the current parametric algebraic Riccati equation (PARE)-based method that requires an iterative approach to solve the PARE online, all relevant parameters in the adopted low-gain design approach are offline determined a priori. Moreover, considering the characteristics of the interval observer, a new stability analysis architecture is given by using a Lyapunov function with a mixture of quadratic and copositive types. Finally, two numerical examples are employed as a means of substantiating the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z. Bai, S. Li, H. Liu, Composite observer-based adaptive event-triggered backstepping control for fractional-order nonlinear systems with input constraints. Math. Methods Appl. Sci. 46(16), 16415–16433 (2023)

    Article  MathSciNet  Google Scholar 

  2. G. Besançon, An overview on observer tools for nonlinear systems. Nonlinear Obser. Appl. 1–33 (2007)

  3. S. Chebotarev, D. Efimov, T. Raïssi, A. Zolghadri, Interval observers for continuous-time LPV systems with L1/L2 performance. Automatica 58, 82–89 (2015)

    Article  Google Scholar 

  4. D. Efimov, W. Perruquetti, T. Raïssi, A. Zolghadri, On Interval Observer Design for Time-Invariant Discrete-Time Systems, in 2013 European Control Conference (ECC) (IEEE, 2013), pp. 2651–2656

  5. D. Efimov, W. Perruquetti, T. Raïssi, A. Zolghadri, Interval observers for time-varying discrete-time systems. IEEE Trans. Autom. Control 58(12), 3218–3224 (2013)

    Article  MathSciNet  Google Scholar 

  6. D. Efimov, T. Raïssi, Design of interval observers for uncertain dynamical systems. Autom. Remote. Control. 77, 191–225 (2016)

    Article  MathSciNet  Google Scholar 

  7. L. Farina, S. Rinaldi, Positive Linear Systems: Theory and Applications, vol. 50 (Wiley, Hoboken, 2000)

    Book  Google Scholar 

  8. H.A. Fertik, C.W. Ross, Direct digital control algorithm with anti-windup feature. ISA Trans. 6(4), 317 (1967)

    Google Scholar 

  9. J.L. Gouzé, A. Rapaport, M.Z. Hadj-Sadok, Interval observers for uncertain biological systems. Ecol. Model. 133(1–2), 45–56 (2000)

    Article  Google Scholar 

  10. D.K. Gu, Q.Z. Liu, Y.D. Liu, Parametric design of functional interval observer for time-delay systems with additive disturbances. Circuits Syst. Signal Process. 1–22 (2022)

  11. T. Hu, Z. Lin, B.M. Chen, An analysis and design method for linear systems subject to actuator saturation and disturbance. Automatica 38(2), 351–359 (2002)

    Article  Google Scholar 

  12. H.K. Khalil, Nonlinear Systems, 3rd edn. (Prentice Hall, London, 2002)

    Google Scholar 

  13. Z. Lin, Robust semi-global stabilization of linear systems with imperfect actuators. Syst. Control Lett. 29(4), 215–221 (1997)

    Article  MathSciNet  Google Scholar 

  14. Z. Lin, Low gain and low-and-high gain feedback: A review and some recent results, in 2009 Chinese Control and Decision Conference (IEEE, 2009), pp. lii–lxi

  15. J. Löfberg, Yalmip: yet another lmi parser (ETH Zurich, Switzerland, 2001)

    Google Scholar 

  16. D.G. Luenberger, Observing the state of a linear system. IEEE Trans. Military Electron. 8(2), 74–80 (1964)

    Article  Google Scholar 

  17. F. Mazenc, O. Bernard, Interval observers for linear time-invariant systems with disturbances. Automatica 47(1), 140–147 (2011)

    Article  MathSciNet  Google Scholar 

  18. F. Mazenc, T.N. Dinh, S.I. Niculescu, Interval observers for discrete-time systems. Int. J. Robust Nonlinear Control 24(17), 2867–2890 (2014)

    Article  MathSciNet  Google Scholar 

  19. H. Nijmeijer, T.I. Fossen, New Directions in Nonlinear Observer Design, vol. 244 (Springer, Berlin, 1999)

    Book  Google Scholar 

  20. A. Rapaport, J. Gouzé, Parallelotopic and practical observers for non-linear uncertain systems. Int. J. Control 76(3), 237–251 (2003)

    Article  Google Scholar 

  21. H. Roger, R.J. Charles, Topics in Matrix Analysis (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  22. A. Saberi, Z. Lin, A.R. Teel, Control of linear systems with saturating actuators. IEEE Trans. Autom. Control 41(3), 368–378 (1996)

    Article  MathSciNet  Google Scholar 

  23. P. Shi, X. Yu, X. Yang, J.J. Rodríguez-Andina, W. Sun, H. Gao, Composite adaptive synchronous control of dual-drive gantry stage with load movement. IEEE Open J. Indus. Electron. Soc. 4, 63–74 (2023)

    Article  Google Scholar 

  24. G. Song, T. Li, K. Hu, B.-C. Zheng, Observer-based quantized control of nonlinear systems with input saturation. Nonlinear Dyn. 86, 1157–1169 (2016)

    Article  MathSciNet  Google Scholar 

  25. X. Song, J. Lam, B. Zhu, C. Fan, Interval observer-based fault-tolerant control for a class of positive Markov jump systems. Inf. Sci. 590, 142–157 (2022)

    Article  Google Scholar 

  26. W. Sun, Y. Yuan, Passivity based hierarchical multi-task tracking control for redundant manipulators with uncertainties. Automatica 155, 111159 (2023)

    Article  MathSciNet  Google Scholar 

  27. W. Sun, Y. Yuan, H. Gao, Hierarchical control for partially feasible tasks with arbitrary dimensions: stability analysis for the tracking case. IEEE Trans. Automatic Control 1–16 (2024)

  28. J. Tsinias, Time-varying observers for a class of nonlinear systems. Syst. Control Lett. 57(12), 1037–1047 (2008)

    Article  MathSciNet  Google Scholar 

  29. X. Wang, X. Wang, H. Su, J. Lam, Reduced-order interval observer based consensus for mass with time-varying interval uncertainties. Automatica 135, 109989 (2022)

    Article  MathSciNet  Google Scholar 

  30. Y. Yang, Q. Wang, Finite-time output feedback control for discrete asynchronous switched systems with saturation nonlinearities. Circuits Syst. Signal Process. 1–25 (2023)

  31. H. Zhang, W. Zhang, Y. Zhao, M. Ji, L. Huang, Adaptive state observers for incrementally quadratic nonlinear systems with application to chaos synchronization. Circuits Syst. Signal Process. 39, 1290–1306 (2020)

    Article  Google Scholar 

  32. Z.H. Zhang, G.H. Yang, Distributed fault detection and isolation for multiagent systems: an interval observer approach. IEEE Trans. Syst. Man Cybern.: Syst. 50(6), 2220–2230 (2018)

    Article  Google Scholar 

  33. G. Zheng, D. Efimov, W. Perruquetti, Design of interval observer for a class of uncertain unobservable nonlinear systems. Automatica 63, 167–174 (2016)

    Article  MathSciNet  Google Scholar 

  34. B. Zhou, G. Duan, Z. Lin, A parametric Lyapunov equation approach to the design of low gain feedback. IEEE Trans. Autom. Control 53(6), 1548–1554 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61973156.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongling Qiu.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Shen, J., Zhang, J. et al. Semi-global Interval Observer-Based Robust Control of Linear Time-Invariant Systems Subject to Input Saturation. Circuits Syst Signal Process 43, 4928–4951 (2024). https://doi.org/10.1007/s00034-024-02716-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-024-02716-z

Keywords

Navigation