Skip to main content
Log in

Robust Possibilistic Fuzzy Additive Partition Clustering Motivated by Deep Local Information

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Aiming at the weak robustness of possibilistic fuzzy clustering against noise, a robust possibilistic fuzzy additive partition clustering with master–slave neighborhood information constraints is proposed for high noise image segmentation. This algorithm first constructs a master–slave neighborhood model, which consists of the master neighborhood window of the current pixel and the slave neighborhood window around the master neighborhood pixel. Then, the master–slave neighborhood information is integrated into the possibilistic fuzzy additive partition clustering model, and a novel robust possibilistic fuzzy clustering model incorporating deep local information is constructed. Next, this clustering model is further simplified by Cauchy inequality and a robust master–slave neighborhood information-driven possibilistic fuzzy clustering algorithm is derived by optimization theory. Extensive experimental results indicate that the proposed algorithm is very effective for noisy image segmentation, and its segmentation performance is significantly better than many existing state-of-the-art fuzzy clustering-related algorithms. In short, the work of this paper has profound significance for the development of robust fuzzy clustering theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. S.K. Abdulateef, M.D. Salman, A comprehensive review of image segmentation techniques. Iraqi J. Electric. Electron. Eng. 17(2), 166–175 (2021). https://doi.org/10.37917/ijeee.17.2.18

    Article  Google Scholar 

  2. M.N. Ahmed, S.M. Yamany, N. Mohamed, A. Farag, T. Moriarty, A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imaging 21(3), 193–199 (2002). https://doi.org/10.1109/42.996338

    Article  Google Scholar 

  3. M. Anjali, K. Anil, J. Peng, Exploring fuzzy local spatial information algorithms for remote sensing image classification. Remote Sens. 13, 4163 (2021). https://doi.org/10.3390/rs13204163

    Article  Google Scholar 

  4. J.C. Bezdek, Numerical taxonomy with fuzzy sets. J. Math. Biol. (1974). https://doi.org/10.1007/BF02339490

    Article  MathSciNet  Google Scholar 

  5. J.C. Bezdek, R. Ehrlich, W. Full, FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984). https://doi.org/10.1016/0098-3004(84)90020-7

    Article  Google Scholar 

  6. J.C. Bezdek, R.J. Hathaway, M.J. Sabin, W.T. Tucker, Convergence theory for fuzzy c-means: counter examples and repairs. IEEE Trans. Syst. Man Cybern. 17(5), 873–877 (1987). https://doi.org/10.1109/TSMC.1987.6499296

    Article  Google Scholar 

  7. S. Bhagyalakshmi, V.G. Biju, Image segmentation using kernel metric and modified weighted fuzzy factor. Empir. Softw. Eng. (Germany) 4(5), 68–71 (2015). https://doi.org/10.17577/IJERTV4IS050183

    Article  Google Scholar 

  8. J.Y. Chen, Y. Li, L.P. Luna, H.W. Chung, S.P. Rowe, Y. Du, L.B. Solnes, E.C. Frey, Learning fuzzy clustering for SPECT/CT segmentation via convolutional neural networks. Med. Phys. 48(7), 3860–3877 (2021). https://doi.org/10.1002/mp.14903

    Article  Google Scholar 

  9. S. Chen, D. Zhang, Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans. Syst. Man Cybern. Part B Cybern. 34(4), 1907–1916 (2004). https://doi.org/10.1109/TSMCB.2004.831165

    Article  Google Scholar 

  10. R.G. Congalton, A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 37, 35–46 (1991). https://doi.org/10.1016/0034-4257(91)90048-B

    Article  Google Scholar 

  11. J. Fan, W. Zhen, W. Xie, Suppressed fuzzy c-means clustering algorithm. Pattern Recognit. Lett. 24, 1607–1612 (2003). https://doi.org/10.1016/S0167-8655(02)00401-4

    Article  Google Scholar 

  12. Q.Y. Feng, L. Chen, C.L. Philip Chen, L. Guo, Deep fuzzy clustering-A representation learning approach. IEEE Trans. Fuzzy Syst. 28(7), 1420–1433 (2020). https://doi.org/10.1109/TFUZZ.2020.2966173

    Article  Google Scholar 

  13. C. Ghosh, D. Majumdar, B. Mondal, A deep learning-based SAR image change detection using spatial intuitionistic fuzzy C-means clustering. Trans. GIS 26(6), 2519–2535 (2022). https://doi.org/10.1111/tgis.12966

    Article  Google Scholar 

  14. D. Gómez, J. Yáñez, C. Guada, J.T. Rodríguez, J. Montero, E. Zarrazola, Fuzzy image segmentation based upon hierarchical clustering. Knowl. Based Syst. 87, 26–37 (2015). https://doi.org/10.1016/j.knosys.2015.07.017

    Article  Google Scholar 

  15. M. Gong, Z. Zhou, J. Ma, Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering. IEEE Trans. Image Process. 21(4), 2141–2151 (2012). https://doi.org/10.1109/TIP.2011.2170702

    Article  MathSciNet  Google Scholar 

  16. M. Gong, Y. Liang, J. Shi, W. Ma, J. Ma, Fuzzy c-means clustering with local information and kernel metric for image segmentation. IEEE Trans. Image Process. 22(2), 573–584 (2013). https://doi.org/10.1109/TIP.2012.2219547

    Article  MathSciNet  Google Scholar 

  17. Y.X. Gu, T.G. Ni, Y.Z. Jiang, Deep possibilistic c-means clustering algorithm on medical datasets. Comput. Math. Methods Med. (2022). https://doi.org/10.1155/2022/3469979

    Article  Google Scholar 

  18. Y. Guo, A. Sengur, A novel color image segmentation approach based on neutrosophic set and modified fuzzy c-means. Circuits Syst. Signal Process. 32(4), 1699–1723 (2013)

    Article  MathSciNet  Google Scholar 

  19. H. He, H. Xing, D. Hu, X. Yu, Novel fuzzy uncertainty modeling for land cover classification based on clustering analysis. Sci. China Earth Sci. 62, 438–450 (2018). https://doi.org/10.1007/s11430-017-9224-6

    Article  Google Scholar 

  20. K. Huang, Y.T. Zhang, H.D. Cheng, P. Xing, B.Y. Zhang, Semantic segmentation of breast ultrasound image with fuzzy deep learning network and breast anatomy constraints. Neurocomputing 450, 319–335 (2021). https://doi.org/10.1016/j.neucom.2021.04.012

    Article  Google Scholar 

  21. https://github.com/lionelee/DIP3E_images

  22. http://weegee.vision.ucmerced.edu/datasets/landuse.html

  23. https://www.kaggle.com/preetviradiya/brian-tumor-dataset

  24. A.E. Ilesanmi, T.O. Ilesanmi, Methods for image denoising using convolutional neural network: a review. Complex Intell. Syst. 7, 2179–2198 (2021). https://doi.org/10.1007/s40747-021-00428-4

    Article  Google Scholar 

  25. P. Jha, A. Tiwari, N. Bharill, M. Ratnaparkhe, M. Mounika, N. Nagendra, Apache Spark based kernelized fuzzy clustering framework for single nucleotide polymorphism sequence analysis. Comput. Biol. Chem. 92, 107475 (2021). https://doi.org/10.1016/j.compbiolchem.2021.107454

    Article  Google Scholar 

  26. X. Jia, T. Lei, X. Du, S. Liu, H. Meng, A.K. Nandi, Robust self-sparse fuzzy clustering for image segmentation. IEEE Access 8, 146182–146195 (2020). https://doi.org/10.1109/ACCESS.2020.3015270

    Article  Google Scholar 

  27. J. Jian, K.-L. Wang, A robust nonlocal fuzzy clustering algorithm with between-cluster separation measure for SAR image segmentation. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7(12), 4929–4936 (2014). https://doi.org/10.1109/JSTARS.2014.2308531

    Article  Google Scholar 

  28. L. Jin, W. Zhang, G. Ma, E. Song, Learning deep CNNs for impulse noise removal in images. J. Vis. Commun. Image R 62, 193–205 (2019). https://doi.org/10.1016/j.jvcir.2019.05.005

    Article  Google Scholar 

  29. B.G. Kim, D.J. Park, Novel target segmentation and tracking based on fuzzy membership distribution for vision-based target tracking system. Image Vis. Comput. 24(12), 1319–1331 (2006). https://doi.org/10.1016/j.imavis.2006.04.008

    Article  Google Scholar 

  30. H. Kour, J. Manhas, V. Sharma, Evaluation of subtractive clustering based adaptive neuro-fuzzy inference system with fuzzy c-means based ANFIS system in diagnosis of Alzheimer. J. Multimed. Inf. Syst. 6(2), 87–90 (2019). https://doi.org/10.33851/JMIS.2019.6.2.87

    Article  Google Scholar 

  31. S. Krinidis, V. Chatzis, A robust fuzzy local information c-means clustering algorithm. IEEE Trans. Image Process. 19(5), 1328–1337 (2010). https://doi.org/10.1109/TIP.2010.2040763

    Article  MathSciNet  Google Scholar 

  32. R. Krishnapuram, J.M. Keller, A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1(2), 98–110 (1993). https://doi.org/10.1109/91.227387

    Article  Google Scholar 

  33. T. Lei, X. Jia, Y. Zhang, L. He, H. Meng, A.K. Nandi, Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering. IEEE Trans. Fuzzy Syst. 26(5), 3027–3041 (2018). https://doi.org/10.1109/TFUZZ.2018.2796074

    Article  Google Scholar 

  34. L. Lei, C. Wu, X. Tian, Robust deep kernel-based fuzzy clustering with spatial information for image segmentation. Appl. Intell. (2022). https://doi.org/10.1007/s10489-022-03255-3

    Article  Google Scholar 

  35. N. Li, H. Huo, Y. Zhao, X. Chen, F. Tao, A spatial clustering method with edge weighting for image segmentation. IEEE Geosci. Remote Sens. Lett. 10(5), 1124–1128 (2013). https://doi.org/10.1109/LGRS.2012.2231662

    Article  Google Scholar 

  36. J. Li, Y. Ning, Z.M. Yuan, C.J. Yang, Research on medical image segmentation based on fuzzy clustering algorithm. Matrix Sci. Pharma 3(1), 9–11 (2019). https://doi.org/10.4103/MTSP.MTSP_3_19

    Article  Google Scholar 

  37. M. Li, L. Xu, S. Gao, N. Xu, B. Yan, Adaptive segmentation of remote sensing images based on global spatial information. Sensors 19(10), 2385 (2019). https://doi.org/10.3390/s19102385

    Article  Google Scholar 

  38. D. Liang, H. Yu, J. Fan, X. Luo, Kernel space local adaptive fuzzy c-means clustering image segmentation. Microelectron. Comput. 36(2), 21–25 (2019). https://doi.org/10.19304/j.cnki.issn1000-7180.2019.02.005

    Article  Google Scholar 

  39. Z.J. Lin, S.J. Zhang, Fuzzy clustering and deep neural network-based image segmentation algorithm. in The International Conference on Computer Science and Technology (CST2016) (2016). https://doi.org/10.1142/9789813146426_0081

  40. Y. Liu, M.M. Cheng, X.W. Hu, J.W. Bian, L. Zhang, X. Bai, J.H. Tang, Richer convolutional features for edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1939–1946 (2019). https://doi.org/10.1109/TPAMI.2018.2878849

    Article  Google Scholar 

  41. B. Liu, S. He, D. He, Y. Zhang, M. Guizani, A spark-based parallel fuzzy c-means segmentation algorithm for agricultural image big data. IEEE Access 7, 42169–42180 (2019). https://doi.org/10.1109/ACCESS.2019.2907573

    Article  Google Scholar 

  42. H. Liu, B. Xu, D.J. Lu, G.J. Zhang, A path planning approach for crowd evacuation in buildings based on improved artificial bee colony algorithm. Appl. Soft Comput. 68, 360–376 (2018). https://doi.org/10.1016/j.asoc.2018.04.015

    Article  Google Scholar 

  43. Z. Lu, Y. Qiu, T. Zhan, Neutrosophic C-means clustering with local information and noise distance-based kernel metric image segmentation. J. Vis. Commun. Image R 58, 269–272 (2019). https://doi.org/10.1016/j.jvcir.2018.11.045

    Article  Google Scholar 

  44. W. Luo, X. Jia, Modified fuzzy local information C-means algorithm. J. Lanzhou Jiaotong Univ. 35(1), 26–29 (2016). https://doi.org/10.3969/j.issn.1001-4373.2016.01.006

    Article  MathSciNet  Google Scholar 

  45. S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, Image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3523–3542 (2022). https://doi.org/10.1109/TPAMI.2021.3059968

    Article  Google Scholar 

  46. X. Muñoz, J. Freixenet, X. Cufi, J. Marti, Strategies for image segmentation combining region and boundary information. Pattern Recognit. Lett. 24(1–3), 375–392 (2003). https://doi.org/10.1016/S0167-8655(02)00262-3

    Article  Google Scholar 

  47. M.Z. Nida, J.A. Musbah, Survey on image segmentation techniques. Proc. Comput. Sci. 62, 797–806 (2015). https://doi.org/10.1016/j.procs.2015.09.027

    Article  Google Scholar 

  48. S.H. Noor, M.A. Adnan, Q.Z. Diyar, A.H. Dathar, Medical images breast cancer segmentation based on K-means clustering algorithm: a review. Asian J. Res. Comput. Sci. 9(1), 23–38 (2021). https://doi.org/10.9734/AJRCOS/2021/v9i130212

    Article  Google Scholar 

  49. N.R. Pal, K. Pal, J.M. Keller, J.C. Bezdek, A possibilistic fuzzy c-means clustering algorithm. IEEE Trans. Fuzzy Syst. 13(4), 517–530 (2005). https://doi.org/10.1109/TFUZZ.2004.840099

    Article  Google Scholar 

  50. R. Pitchai, P. Supraja, A. Helen Victoria, M. Madhavi, Brain tumor segmentation using deep learning and fuzzy k-means clustering for magnetic resonance images. Neural. Process. Lett. 53, 2519–2532 (2021). https://doi.org/10.1007/s11063-020-10326-4

    Article  Google Scholar 

  51. J. Shi, J. Malik, Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000). https://doi.org/10.1109/34.868688

    Article  Google Scholar 

  52. B.M. Singh, K.K. Verma, S. Mridula, Noise removal technique for document images. J. Multimed. Inf. Syst. 10(1), 1–4 (2023). https://doi.org/10.33851/JMIS.2023.10.1.1

    Article  Google Scholar 

  53. Y. Tang, F. Ren, W. Pedrycz, Fuzzy c-means clustering through SSIM and patch for image segmentation. Appl. Soft Comput. (2020). https://doi.org/10.1016/j.asoc.2019.105928

    Article  Google Scholar 

  54. Q. Wang, X. Wang, C. Fang, W. Yang, Robust fuzzy C-means clustering algorithm with adaptive spatial and intensity constraint and membership linking for noise image segmentation. Appl. Soft Comput. (2020). https://doi.org/10.1016/j.asoc.2020.106318

    Article  Google Scholar 

  55. C. Wu, N. Liu, Suppressed robust picture fuzzy clustering for image segmentation. Soft. Comput. 25, 3751–3774 (2021). https://doi.org/10.1007/s00500-020-05403-8

    Article  Google Scholar 

  56. A. Zare, N. Young, D. Suen, T. Nabelek, A. Galusha, J. Keller, Possibilistic fuzzy local information C-Means for sonar image segmentation. in IEEE Symposium Series on Computational Intelligence (SSCI) (2017), pp. 1–8. https://doi.org/10.1109/SSCI.2017.8285358

  57. X. Zhang, Q. Guo, Y. Sun, H. Liu, G. Wang, Q. Su, C. Zhang, Patch-based fuzzy clustering for image segmentation. Soft. Comput. 23(3), 3081–3093 (2019). https://doi.org/10.1007/s00500-017-2955-2

    Article  Google Scholar 

  58. X. Zhang, Y. Sun, H. Liu, Z. Hou, F. Zhao, C. Zhang, Improved clustering algorithms for image segmentation based on non-local information and back projection. Inf. Sci. 550, 129–144 (2020). https://doi.org/10.1016/j.ins.2020.10.039

    Article  MathSciNet  Google Scholar 

  59. X. Zhang, Y. Sun, G. Wang, Q. Guo, C. Zhang, B. Chen, Improved fuzzy clustering algorithm with non-local information for image segmentation. Multimed. Tools Appl. 76, 7869–7895 (2017). https://doi.org/10.1007/s11042-016-3399-x

    Article  Google Scholar 

  60. H. Zhang, Q. Wang, W. Shi, H. Mao, A novel adaptive fuzzy local information c-means clustering algorithm for remotely sensed imagery classification. IEEE Trans. Geosci. Remote Sens. 55(9), 5057–5068 (2017). https://doi.org/10.1109/TGRS.2017.2702061

    Article  Google Scholar 

  61. F. Zhao, J. Fan, H. Liu, Optimal-selection-based suppressed fuzzy c-means clustering algorithm with self-tuning non-local spatial information for image segmentation. Expert Syst. Appl. 41(9), 4083–4093 (2014). https://doi.org/10.1016/j.eswa.2014.01.003

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their constructive suggestions to improve the overall quality of the paper. Besides, the authors would like to thank the School of Electronic Engineering, Xi’an University of Posts & Telecommunications, Xi’an, China, for the financial support.

Funding

This work was supported by the National Natural Science Foundation of China (62071378) and the Shaanxi Natural Science Foundation of China (2022JM-370).

Author information

Authors and Affiliations

Authors

Contributions

Chengmao Wu: Conceptualization, Methodology, Visualization, Investigation. Wen Wu: Data curation, Writing—original draft, Software, Validation, Writing—review & editing.

Corresponding author

Correspondence to Wen Wu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Wu, W. Robust Possibilistic Fuzzy Additive Partition Clustering Motivated by Deep Local Information. Circuits Syst Signal Process 43, 7662–7713 (2024). https://doi.org/10.1007/s00034-024-02758-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-024-02758-3

Keywords