Skip to main content
Log in

Diffusion Combinatoric Correntropy Algorithm for Distributed Estimation

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Distributed estimation algorithms, when based on the mean-square error criterion, often encounter steady-state misalignment in scenarios where the adaptive network experiences impulsive noise. Addressing this challenge, this paper introduces the diffusion combinatoric correntropy algorithm, which employs the combinatoric correntropy as its cost function. Leveraging the inherent robustness of the combinatoric correntropy cost function, this algorithm effectively mitigates the negative impacts caused by impulse noise. A comprehensive analysis, including experimental simulations, is conducted to evaluate the performance of the diffusion combinatoric maximum correntropy criterion algorithm. The simulation outcomes demonstrate that the proposed algorithm surpasses the diffusion maximum correntropy criterion algorithm in terms of convergence speed and steady-state performance. These simulation results align closely with the theoretical analysis, further validating the effectiveness of the diffusion combinatoric correntropy algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article. Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. M.S.E. Abadi, M.S. Shafiee, Distributed estimation over an adaptive diffusion network based on the family of affine projection algorithms. IEEE Trans Signal Inf Process over Netw 5(2), 234–247 (2018)

    MathSciNet  MATH  Google Scholar 

  2. F Albu, C Paleologu, J Benesty. A low complexity proportionate affine projection algorithm for echo cancellation. 2010 18th European signal processing conference. IEEE. 6–10(2010)

  3. S. Ashkezari-Toussi, H. Sadoghi-Yazdi, Robust diffusion LMS over adaptive networks. Signal Process. 158, 201–209 (2019)

    MATH  Google Scholar 

  4. A. Bajaj, S. Kumar, Design of ECG denoising digital filter under α-stable noisy environment based on morphological signal processing. Circuit Syst Signal Process. 43(5), 3180–3211 (2024)

    MATH  Google Scholar 

  5. F.S. Cattivelli, C.G. Lopes, A.H. Sayed, Diffusion recursive least-squares for distributed estimation over adaptive networks. IEEE Trans. Signal Process. 56(5), 1865–1877 (2008)

    MathSciNet  MATH  Google Scholar 

  6. F. Chen, X. Li, S. Duan, Diffusion generalized maximum correntropy criterion algorithm for distributed estimation over multitask network. Digital Signal Process. 81, 16–25 (2018)

    MathSciNet  MATH  Google Scholar 

  7. B.L.J. ChenXingLiang, Steady-state mean-square error analysis for adaptive filtering under the maximum correntropy criterion. IEEE Signal Process. Lett. 21(7), 880–884 (2014)

    MATH  Google Scholar 

  8. B. Chen, L. Xing, H. Zhao, Generalized correntropy for robust adaptive filtering. IEEE Trans. Signal Process. 64(13), 3376–3387 (2016)

    MathSciNet  MATH  Google Scholar 

  9. F. Chen, T. Shi, S. Duan, Diffusion least logarithmic absolute difference algorithm for distributed estimation. Signal Process. 142, 423–430 (2018)

    MATH  Google Scholar 

  10. S. Guan, Q. Cheng, Y. Zhao, Diffusion adaptive filtering algorithm based on the fair cost function. Sci rep 11(1), 19715 (2021)

    MATH  Google Scholar 

  11. S. Guan, C. Meng, B. Biswal, Diffusion-probabilistic least mean square algorithm. Circuits Syst Signal Process. 40, 1295–1313 (2021)

    MATH  Google Scholar 

  12. S. Guan, Y. Zhao, L. Wang, A distributed adaptive algorithm based on the asymmetric cost of error functions. Circuits Syst Signal Process. 42(10), 5811–5837 (2023)

    MATH  Google Scholar 

  13. Y. Guo, B. Ma, Y. Li, A kernel-width adaption diffusion maximum correntropy algorithm. IEEE Access. 8, 33574–33587 (2020)

    MATH  Google Scholar 

  14. H.J. Hadi, Y. Cao, K.U. Nisa, A comprehensive survey on security, privacy issues and emerging defence technologies for UAVs. J. Netw. Comput. Appl. 213, 103607 (2023)

    Google Scholar 

  15. Y. Huo, T. Xu, Y. Qi, A family of robust diffusion adaptive filtering algorithms based on the Tanh framework. Circuits Syst Signal Process. 43, 1938–1956 (2024)

    MATH  Google Scholar 

  16. Y. Huo, T. Xu, Y. Xu, Diffusion robust algorithm based on inverse hyperbolic sine and generalized Correntropy. Digital Signal Process. 144, 104289 (2024)

    MATH  Google Scholar 

  17. C.T. Kelley, Iterative methods for optimization. SIAM J. Optim. (1999). https://doi.org/10.1137/1.9781611970920

    Article  MATH  Google Scholar 

  18. M. Korki, H. Zayyani, Weighted diffusion continuous Combinatoric p-norm algorithm for distributed estimation in non-uniform noise environment. Signal Process. 164, 225–233 (2019)

    MATH  Google Scholar 

  19. R. Kranthi, A. Kar, M.G. Christensen, A family of Swish diffusion strategy based adaptive algorithms for distributed active noise control. IEEE Open J Signal Process 5, 503 (2024)

    MATH  Google Scholar 

  20. Z. Li, S. Guan, Diffusion normalized Huber adaptive filtering algorithm. J. Franklin Inst. 355(8), 3812–3825 (2018)

    MathSciNet  MATH  Google Scholar 

  21. X. Li, M. Feng, F. Chen, Robust distributed estimation based on a generalized correntropy logarithmic difference algorithm over wireless sensor networks. Signal Process. 177, 107731 (2020)

    MATH  Google Scholar 

  22. X. Long, H. Zhao, X. Hou, A novel combinatoric correntropy algorithm: properties and its performance analysis. IEEE Trans Circuit Syst II Express Brief. 69(12), 5184–5188 (2022)

    MATH  Google Scholar 

  23. X. Long, H. Zhao, X. Hou, A novel widely-linear complex-valued diffusion VSS-LMS algorithm for distributed network and its performance analysis. Circuits Syst Signal Process (2024). https://doi.org/10.1007/s00034-024-02769-0

    Article  MATH  Google Scholar 

  24. L. Lu, H. Zhao, W. Wang, Performance analysis of the robust diffusion normalized least mean ${p} $-power algorithm. IEEE Trans. Circuit Syst. II Express Brief. 65(12), 2047–2051 (2018)

    MATH  Google Scholar 

  25. C.G. Lopes, A.H. Sayed, Diffusion least-mean squares over adaptive networks: formulation and performance analysis. IEEE Trans. Signal Process. 56(7), 3122–3136 (2008)

    MathSciNet  MATH  Google Scholar 

  26. W. Ma, B. Chen, J. Duan, Diffusion maximum correntropy criterion algorithms for robust distributed estimation. Digital Signal Process. 58, 10–19 (2016)

    MATH  Google Scholar 

  27. M. Nautiyal, S.S. Bhattacharjee, N.V. George, Low complexity and robust diffusion affine projection algorithms for distributed estimation. IEEE Trans. Circuit Syst. II Express Brief. 69(3), 1952–1956 (2021)

    MATH  Google Scholar 

  28. M. Nautiyal, S.S. Bhattacharjee, N.V. George, Robust and sparse aware diffusion adaptive algorithms for distributed estimation. IEEE Trans. Circuit Syst. II Express Briefs 69(1), 239–243 (2021)

    MATH  Google Scholar 

  29. J. Ni, Diffusion sign subband adaptive filtering algorithm for distributed estimation. IEEE Signal Process. Lett. 22(11), 2029–2033 (2015)

    MATH  Google Scholar 

  30. J. Ni, J. Chen, X. Chen, Diffusion sign-error LMS algorithm: Formulation and stochastic behavior analysis. Signal Process. 128, 142–149 (2016)

    MATH  Google Scholar 

  31. L. Peng, T. Zhang, S. Wang, Diffusion adagrad minimum kernel risk sensitive mean p-power loss algorithm. Signal Process. 202, 1938–1956 (2024)

    MATH  Google Scholar 

  32. Z. Qing, J. Ni, J. Chen, Diffusion least mean kurtosis algorithm and its performance analysis. Inf. Sci. 638, 118982 (2023)

    MATH  Google Scholar 

  33. S. Lv, H. Zhao, Robust diffusion recursive least M-estimate adaptive filtering and its performance analysis. Circuits Syst Signal Process. 42(8), 4929–4952 (2023)

    MATH  Google Scholar 

  34. A.N. Sadigh, H. Zayyani, A proportionate robust diffusion recursive least exponential hyperbolic cosine algorithm for distributed estimation. IEEE Trans. Circuits Syst. II Express Briefs 69(4), 2381–2385 (2022)

    MATH  Google Scholar 

  35. S.P. Talebi, S. Werner, D.P. Mandic, Distributed adaptive filtering of alpha-stable signals. IEEE Signal Process. Lett. 25(10), 1450–1454 (2018)

    MATH  Google Scholar 

  36. F. Wang, Y. He, S. Wang, Maximum total correntropy adaptive filtering against heavy-tailed noises. Signal Process. 141, 84–95 (2017)

    MATH  Google Scholar 

  37. Y. Wang, Y. Li, F. Albu, Group-constrained maximum correntropy criterion algorithms for estimating sparse mix-noised channels. Entropy 19(8), 432 (2017)

    MATH  Google Scholar 

  38. F. Wen, Diffusion least-mean P-power algorithms for distributed estimation in alpha-stable noise environments. Electron. Lett. 49(21), 1355–1356 (2013)

    MATH  Google Scholar 

  39. Y. Yu, H. Zhao, W. Wang, Robust diffusion Huber-based normalized least mean square algorithm with adjustable thresholds. Circuits Syst Signal Process. 39, 2065–2093 (2020)

    MATH  Google Scholar 

  40. S. Zandi, M. Korki, Diffusion maximum versoria criterion algorithms robust to impulsive noise. Digital Signal Process. 126, 103490 (2022)

    Google Scholar 

  41. H. Zayyani, M. Korki, Adaptive-width generalized correntropy diffusion algorithm for secure distributed estimation. IEEE Trans. Circuit Syst. II Express Briefs 70(7), 2700–2704 (2023)

    MATH  Google Scholar 

  42. J. Zhang, J. Tian, A.M. Alcaide, Lifetime extension approach based on the Levenberg–Marquardt neural network and power routing of DC–DC converters. IEEE Trans. Power Electron. 38(8), 10280–10291 (2023)

    MATH  Google Scholar 

  43. J. Zhang, J. Tian, P. Yan, Multi-hop graph pooling adversarial network for cross-domain remaining useful life prediction: a distributed federated learning perspective. Reliab. Eng. Syst. Saf. 244, 109950 (2024)

    MATH  Google Scholar 

  44. H. Zhao, Y. Chen, S. Lv, Robust diffusion total least mean M-estimate adaptive filtering algorithm and its performance analysis. IEEE Trans. Circuit Syst. II Express Brief. 69(2), 654–658 (2021)

    MATH  Google Scholar 

  45. Z. Zheng, Z. Liu, M. Huang, Diffusion least mean square/fourth algorithm for distributed estimation. Signal Process. 134, 268–274 (2017)

    MATH  Google Scholar 

Download references

Acknowledgements

This research was jointly supported by the National Natural Science Foundation of China (32360434), and the Gansu Provincial Department of Education: Industry Support Program Project, China (2023CYZC-11).

Funding

National Natural Science Foundation of China,32360434,shengwei Wang,Gansu Provincial Department of Education: Industry Support Program Project,2023CYZC-11,shengwei Wang

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengwei Wang.

Ethics declarations

Conflict of interest

All authors disclosed on relevant relationships.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Xu, Y., Xu, T. et al. Diffusion Combinatoric Correntropy Algorithm for Distributed Estimation. Circuits Syst Signal Process 44, 889–910 (2025). https://doi.org/10.1007/s00034-024-02826-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-024-02826-8

Keywords