Skip to main content

Advertisement

Log in

Individually Weighted Modified Logarithmic Hyperbolic Sine Curvelet Based Recursive FLN for Nonlinear System Identification

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Lately, an adaptive exponential functional link network (AEFLN) involving exponential terms integrated with trigonometric functional expansion is being introduced as a linear-in-the-parameters nonlinear filter. However, they exhibit degraded efficacy in lieu of non-Gaussian or impulsive noise interference. Therefore, to enhance the nonlinear modelling capability, here is a modified logarithmic hyperbolic sine cost function in amalgamation with the adaptive recursive exponential functional link network. In conjugation with this, a sparsity constraint motivated by a curvelet-dependent notion is employed in the suggested approach. Therefore, this paper presents an individually weighted modified logarithmic hyperbolic sine curvelet-based recursive exponential FLN (IMLSC-REF) for robust sparse nonlinear system identification. An individually weighted adaptation gain is imparted to several coefficients corresponding to the nonlinear adaptive model for accelerating the convergence rate. The weight update rule and the maximum criteria for the convergence factor are being further derived. Exhaustive simulation studies profess the effectiveness of the introduced algorithm in case of varied nonlinearity and for identifying as well as modelling the physical path of the acoustic feedback phenomenon of a behind-the-ear (BTE) hearing aid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Algorithm 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. S.S. Bhattacharjee, M.A. Shaikh, K. Kumar, N.V. George, Robust constrained generalized correntropy and maximum Versoria criterion adaptive filters. IEEE Trans. Circuits Syst. II Express Briefs 68(8), 3002–3006 (2021)

    Google Scholar 

  2. S.S. Bhattacharjee, N.V. George, Nonlinear system identification using exact and approximate improved adaptive exponential functional link networks. IEEE Trans. Circuits Syst. II Express Briefs 67(12), 3542–3546 (2020)

    MATH  Google Scholar 

  3. S.C. Chan, Y.X. Zou, A recursive least M-estimate algorithm for robust adaptive filtering in impulsive noise: fast algorithm and convergence performance analysis. IEEE Trans. Signal Process. 52(4), 975–991 (2004)

    MathSciNet  MATH  Google Scholar 

  4. B. Chen, X. Wang, Y. Li, J.C. Príncipe, Maximum correntropy criterion with variable center. IEEE Signal Process. Lett. 26(8), 1212–1216 (2019)

    MATH  Google Scholar 

  5. B.D. Chen, L. Xing, Z. Haiquan, Z. Nanning, N. Principe, Generalized correntropy for robust adaptive filtering. IEEE Trans. Signal Process. 64(13), 3376–3387 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Y. Cheng, C. Li, S. Chen, Z. Zhou, An enhanced impulse noise control algorithm using a novel nonlinear function. Circuits Syst. Signal Process. 42, 1–20 (2023)

    MATH  Google Scholar 

  7. C. Danilo, S. Michele, A. Luis, A.G. Jeronimo, U. Aurelio, Functional link adaptive filters for nonlinear acoustic echo cancellation. IEEE Trans. Audio Speech Lang. Process. 21(7), 1502–1512 (2013)

    MATH  Google Scholar 

  8. C. Danilo, S. Michele, S. Simone. U. Aurelio, Sparse functional link adaptive filter using an \(l_1\)-norm regularization, in 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5 (2018)

  9. W. Gen, Z. Haiquan, S. Pucha, Robust variable step-size reweighted zero-attracting least mean M-estimate algorithm for sparse system identification. IEEE Trans. Circuits Syst. II Express Briefs 67, 1149 (2020)

    MATH  Google Scholar 

  10. N. George, A. Gonzalez, Convex combination of nonlinear adaptive filters for active noise control. Appl. Acoust. 76, 157–161 (2014)

    MATH  Google Scholar 

  11. S.S. Haykin, Adaptive Filter Theory (1991)

  12. F. He, Y. Yang, Nonlinear system identification of neural systems from neurophysiological signals. Neuroscience 458, 213–228 (2021)

    MATH  Google Scholar 

  13. F. Huang, Z. Jiashu, Z. Sheng, A family of robust diffusion adaptive filtering algorithms based on the sigmoidal cost. Signal Process. 149, 179 (2018)

    MATH  Google Scholar 

  14. F. Huang, Z. Jiashu, Z. Sheng, Maximum Versoria criterion-based robust adaptive filtering algorithm. IEEE Trans. Circuits Syst. II Express Briefs 64(10), 1252–1256 (2017)

    MATH  Google Scholar 

  15. Y. Huo, T. Xu, Y. Qi, R. Ding, A family of robust diffusion adaptive filtering algorithms based on the Tanh framework. Circuits Syst. Signal Process 43, 1–19 (2023)

    MATH  Google Scholar 

  16. R. Isermann, M. Münchhof, Identification of dynamic systems: an introduction with applications (2010)

  17. S. Jain, S. Majhi, Zero-attracting kernel maximum Versoria criterion algorithm for nonlinear sparse system identification. IEEE Signal Process. Lett. 29, 1546–1550 (2022)

    MATH  Google Scholar 

  18. K. Krishna, M.L.N.S. Karthik, N.V. George, A novel family of sparsity-aware robust adaptive filters based on a logistic distance metric. IEEE Trans. Signal Process. 70, 6128 (2022)

    MathSciNet  MATH  Google Scholar 

  19. K. Krishna, B. Sankha, N. George, Modified Champernowne function based robust and sparsity-aware adaptive filters. IEEE Signal Process. Lett. 30, 200 (2023)

    MATH  Google Scholar 

  20. K. Kumar, S.S. Bhattacharjee, N.V. George, Joint logarithmic hyperbolic Cosine robust sparse adaptive algorithms. IEEE Trans. Circuits Syst. II Express Briefs 68, 526 (2021)

    MATH  Google Scholar 

  21. K. Kumar, M.L.N.S. Karthik, N.V. George, Generalized modified blake-Zisserman robust sparse adaptive filters. IEEE Trans. Syst. Man Cybern. Syst. 53(1), 647 (2023)

    MATH  Google Scholar 

  22. K. Kumar, R. Pandey, S.S. Bhattacharjee, N.V. George, Exponential hyperbolic cosine robust adaptive filters for audio signal processing. IEEE Signal Process. Lett. 28, 1410 (2021)

    MATH  Google Scholar 

  23. K. Kumar, R. Pandey, S.S. Bora, N.V. George, A robust family of algorithms for adaptive filtering based on the arctangent framework. IEEE Trans. Circuits Syst. II Express Briefs 69, 1967 (2022)

    MATH  Google Scholar 

  24. L. Li, J. Zhao, Q. Li, L. Tang, H. Zhang, Recursive constrained maximum Versoria criterion algorithm for adaptive filtering. Commun. Comput. Inf. Sci. 199(14), 433–445 (2023)

    MATH  Google Scholar 

  25. Y. Li, Y. Wang, F. Albu, J. Jiang, general zero attraction proportionate normalized Maximum correntropy criterion algorithm for sparse system identification. Article Symmetry 9, 229 (2017)

    MATH  Google Scholar 

  26. Ch. Liu, M. Jiang, Robust adaptive filter with lncosh cost. Signal Process. 168, 107348 (2020)

    MATH  Google Scholar 

  27. Z. Mohagheghian Bidgoli, M. Bekrani, A Switching-based variable step-size PNLMS adaptive filter for sparse system identification. Circuits Syst. Signal Process. 43, 568 (2023)

    MATH  Google Scholar 

  28. V. Patel, V. Gandhi, S. Heda, N.V. George, Design of adaptive exponential functional link network-based nonlinear filters. IEEE Trans. Circuits Syst. I(63), 1434–1442 (2016)

    MathSciNet  MATH  Google Scholar 

  29. J.C. Patra, A. Kot, Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks. IEEE Trans. Syst. Man Cybern. Part B Cybern. 32, 505–511 (2002)

    MATH  Google Scholar 

  30. S. Peng, S. Wee, B. Chen, L. Sun, Z. Lin, Robust constrained adaptive filtering under minimum error entropy criterion. IEEE Trans. Circuits Syst. II Express Briefs 65(8), 1119–1123 (2018)

    MATH  Google Scholar 

  31. S. Radhika, F. Albu, A. Chandrasekar, Proportionate maximum Versoria criterion-based adaptive algorithm for sparse system identification. IEEE Trans. Circuits Syst. II Express Briefs 69(3), 1902–1906 (2022)

    MATH  Google Scholar 

  32. K. Rao, E. Plotkin, M.N. Swamy, Adaptive blind equalization of nonlinear channels and chaotic systems using coupled EKF and RLS estimator. IETE J. Res. 51(3), 181–192 (2005)

    MATH  Google Scholar 

  33. S. Radhika, F. Albu, A. Chandrasekar, Robust exponential hyperbolic sine adaptive filter for impulsive noise environments. IEEE Trans. Circuits Syst. II Express Briefs 69(12), 5149–5153 (2022)

    MATH  Google Scholar 

  34. J. Sandesh, M. Sudhan, Zero-attracting Kernel maximum Versoria criterion algorithm for nonlinear sparse system identification. IEEE Signal Process. Lett. 29, 1546 (2022)

    MATH  Google Scholar 

  35. L. Shaohui, Z. Haiquan, Robust diffusion recursive least M-estimate adaptive filtering, and its performance analysis. Circuits Syst. Signal Process. 42, 1–24 (2023)

    MATH  Google Scholar 

  36. Z. Sheng, Z. Wei, Recursive adaptive sparse exponential functional link neural network for nonlinear AEC in impulsive noise environment. IEEE Trans. Neural Netw. Learn. Syst. 29(9), 4314–4323 (2018)

    MATH  Google Scholar 

  37. G. Vasundhara Panda, N.B. Puhan, Individual-activation-factor based novel approach for acoustic feedback suppression in hearing aid. Appl. Acoust. 127, 74–79 (2017). https://doi.org/10.1016/j.apacoust.2017.05.015

    Article  MATH  Google Scholar 

  38. N.B. VasundharaPuhan, G. Panda, De-correlated improved adaptive exponential FLAF-based nonlinear adaptive feedback cancellation for hearing aids. IEEE Trans. Circuits Syst. I Reg. Pap. 65(2), 650–662 (2018)

    Google Scholar 

  39. Vasundhara, Re-weighted zero attracting adaptive exponential FLAF with maximum correntropy criterion for robust sparse nonlinear system identification. Digit. Signal Process. 130, 103664 (2022)

    MATH  Google Scholar 

  40. Vasundhara, Robust filtering employing bias-compensated M-estimate affine-projection-like algorithm. IET Electron. Lett. 56(5), 241–253 (2020)

    Google Scholar 

  41. Vasundhara, Sparsity aware affine-projection-like filtering integrated with robust set membership and M-estimate approach for acoustic feedback cancellation in hearing aids. Appl. Acoust. 175, 107778 (2021)

    MATH  Google Scholar 

  42. S. Wang, W. Wang, K. Xiong, H.H.C. Iu, C.K. Tse, Logarithmic hyperbolic cosine adaptive filter and its performance analysis. IEEE Trans. Syst. Man Cybern. Syst. 51(4), 2512–2524 (2021)

    MATH  Google Scholar 

  43. F.Y. Wu, Y.C. Song, R. Peng, A Scaled LMS algorithm for sparse system identification with impulsive interference. Circuits Syst. Signal Process. 42, 4432 (2023)

    MATH  Google Scholar 

  44. Z. Yingying, Z. Haiquan, Z. Xiangping, B.D. Chen, Robust generalized Maximum correntropy criterion algorithms for active noise control. IEEE/ACM Trans. Audio Speech Lang. Process. 28, 1282–1292 (2020)

    MATH  Google Scholar 

  45. T. Yu, W. Li, Y. Yu, R.C. de Lamare, Robust adaptive filtering based on exponential functional link network: analysis and application. IEEE Trans. Circuits Syst. II Express Briefs 68(7), 2720–2724 (2021)

    MATH  Google Scholar 

  46. S. Zandi, M. Korki, Diffusion maximum versoria criterion algorithms robust to impulsive noise. Digit. Signal Process. 126, 103490 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasundhara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chikyal, N., Vasundhara, Bhar, C. et al. Individually Weighted Modified Logarithmic Hyperbolic Sine Curvelet Based Recursive FLN for Nonlinear System Identification. Circuits Syst Signal Process 44, 306–337 (2025). https://doi.org/10.1007/s00034-024-02839-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-024-02839-3

Keywords