Skip to main content
Log in

Robust Total Least Mean M-Estimate Normalized Subband Filter Adaptive Algorithm Under EIV Model in Impulsive Noise

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In order to solve the problem of deteriorating performance of the conventional subband adaptive filtering algorithm when processing the EIV model with impulsive noise, this paper proposes the robust Total Least Mean M-Estimate normalized subband filter (TLMM-NSAF) adaptive algorithm based on the M-estimation function. In addition, we conduct a detailed theoretical performance analysis of the TLMM-NSAF algorithm, which allows us to determine the stable step size range and theoretical steady-state mean squared deviation of the algorithm. To further improve the algorithm's performance, we propose a new variable step size method. Finally, we compared the algorithm with other competition algorithms in applications of system identification and acoustic echo cancellation. Simulation results have demonstrated the superiority of our proposed algorithm, as well as the consistency between the theoretical values and the simulated values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. K.M. Abadir, J.R. Magnus, Matrix algebra (Cambridge University Press, Cambridge, 2005)

    Book  MATH  Google Scholar 

  2. R. Arablouei, S. Werner, K. Doğançay, Analysis of the gradient-descent total least-squares adaptive filtering algorithm. IEEE Trans. Signal Process. 62(5), 1256–1264 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Arenas-Garcia, A.R. Figueiras-Vidal, A.H. Sayed, Mean-square performance of a convex combination of two adaptive filters. IEEE Trans. Signal Process. 54(3), 1078–1090 (2006)

    Article  MATH  Google Scholar 

  4. M.Z.A. Bhotto, A. Antoniou, Affine-projection-like adaptive-filtering algorithms using gradient-based step size. IEEE Trans. Circuits Syst. I Regul. Pap. 61(7), 2048–2056 (2014)

    Article  MATH  Google Scholar 

  5. S.-C. Chan, Y.-X. Zou, A recursive least M-estimate algorithm for robust adaptive filtering in impulsive noise: fast algorithm and convergence performance analysis. IEEE Trans. Signal Process. 52(4), 975–991 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Feuer, E. Weinstein, Convergence analysis of LMS filters with uncorrelated Gaussian data. IEEE Trans. Acoust. Speech Signal Process. 33(1), 222–230 (1985)

    Article  MATH  Google Scholar 

  7. J.J. Jeong, S.H. Kim, G. Koo, S.W. Kim, Mean-square deviation analysis of multiband-structured subband adaptive filter algorithm. IEEE Trans. Signal Process. 64(4), 985–994 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. C.T. Kelley, Iterative Methods for Optimization (SIAM, Philadelphia, PA, 1999)

    Book  MATH  Google Scholar 

  9. R.H. Kwong, E.W. Johnston, A variable step size LMS algorithm. IEEE Trans. Signal Process. 40(7), 1633–1642 (1992)

    Article  MATH  Google Scholar 

  10. K.A. Lee, W.S. Gan, Improving convergence of the NLMS algorithm using constrained subband updates. IEEE Signal Process. Lett. 11(9), 736–739 (2004)

    Article  MATH  Google Scholar 

  11. J. Ni, F. Li, Adaptive combination of subband adaptive filters for acoustic echo cancellation. IEEE Trans. Consum. Electron. 56(3), 1549–1555 (2010)

    Article  MATH  Google Scholar 

  12. T.K. Paul, T. Ogunfunmi, On the convergence behavior of the affine projection algorithm for adaptive filters. IEEE Trans. Circuits Syst. I Regul. Pap. 58(8), 1813–1826 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. A.H. Sayed, Fundamentals of Adaptive Filtering (Wiley, Hoboken, NJ, USA, 2003)

    MATH  Google Scholar 

  14. T. Söerström, Errors-in-variables methods in system identification. Automatica 43(6), 939–958 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. F. Wang, Y. He, S. Wang, B. Chen, Maximum total correntropy adaptive filtering against heavy-tailed noises. Signal Process. 141, 84–95 (2017)

    Article  MATH  Google Scholar 

  16. W. Wang, H. Zhao, B. Chen, Bias compensated zero attracting normalized least mean square adaptive filter and its performance analysis. Signal Process. 143(94), 105 (2018)

    MATH  Google Scholar 

  17. Y. Yu, H. He, B. Chen, J. Li, Y. Zhang, L. Lu, M-estimate based normalized subband adaptive filter algorithm: Performance analysis and improvements. /ACM Trans. Audio, Speech Lang. Process. 28, 225–239 (2020)

    Article  MATH  Google Scholar 

  18. Y. Yu, H. He, T. Yang, X. Wang, R.C. de Lamare, Diffusion normalized least mean M-estimate Algorithms: design and performance analysis. IEEE Trans. Signal Process. 68, 2199–2214 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Zhao, Z. Cao, Robust generalized maximum Blake-Zisserman total correntropy adaptive filter for generalized Gaussian noise and noisy input. IEEE Trans. Syst., Man, Cybern., Syst. 53(11), 6757–6765 (2023)

    Article  MATH  Google Scholar 

  20. H. Zhao, Y. Chen, J. Liu, Y. Zhu, Total least squares normalized subband adaptive filter algorithm for noisy input. IEEE Trans. Circuits Syst. II: Express Br. 69(3), 1977–1981 (2022)

    MATH  Google Scholar 

  21. H. Zhao, D. Liu, S. Lv, Robust maximum correntropy criterion subband adaptive filter algorithm for impulsive noise and noisy input. IEEE Trans. Circuits Syst. II: Express Br. 69(2), 604–608 (2022)

    MATH  Google Scholar 

  22. H. Zhao, G. Wang, F. Zhao, D. Liu, P. Song, Recursive general mixed norm algorithm for censored regression: performance analysis and channel equalization application. IEEE Trans., Syst., Man, Cybern., Syst. 54(2), 752–763 (2024)

    Article  MATH  Google Scholar 

  23. Z. Zheng, Z. Liu, Influence of input noises on the mean-square performance of the normalized subband adaptive filter algorithm. J. Franklin Inst. 357(2), 1318–1330 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Z. Zheng, Z. Liu, X. Lu, Robust normalized subband adaptive filter algorithm against impulsive noises and noisy inputs. J. Franklin Inst. 357(5), 3113–3134 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Natural Science Foundation of China (Grant: 62171388, 61871461, 61571374) and the funding of Chengdu Guojia Electrical Engineering Co., Ltd (Grant: NEEC-2019-A02)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiquan Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Section 4 of the paper states that the error \(e_{i,D} \left( t \right)\) satisfies the equation \(e_{i,D} \left( t \right) = {\varvec{h}}^{T} \tilde{x}_{i} \left( t \right)\varvec{ - w}^{T} \left( t \right)\tilde{x}_{i} \left( t \right)\), and that \({\varvec{w}}\left( t \right) \approx {\varvec{w}}_{0}\) when the number of iterations of the algorithm is sufficiently large. From this, (31) can be simplified to:

$$ \begin{aligned} {\frac{{2E\left[ {\tilde{\varvec{w}}(t)^{T} \hat{\varvec{g}}_{TLMM - NSAF} ({\varvec{w}}(t))} \right]}}{{E\left[ {\hat{\varvec{g}}_{TLMM - NSAF} ({\varvec{w}}(t))^{T} \hat{\varvec{g}}_{TLMM - NSAF} ({\varvec{w}}(t))} \right]}}} \hfill \\ { \approx \frac{{2E\left[ {\frac{{e_{i,D}^{2} }}{{\left\| {\overline{\varvec{w}}_{0} } \right\|^{2} \left\| {\tilde{x}} \right\|^{2} }}} \right]}}{{E\left[ {\frac{{e_{i,D}^{2} \left\| {\tilde{x}} \right\|^{2} }}{{\left\| {\overline{\varvec{w}}_{0} } \right\|^{4} \left\| {\tilde{x}} \right\|^{4} }} + \frac{{2e_{i,D}^{3} \tilde{x}^{T} {\varvec{w}}_{0} }}{{\left\| {\overline{\varvec{w}}_{0} } \right\|^{6} \left\| {\tilde{x}} \right\|^{4} }} + \frac{{e_{i,D}^{4} {\varvec{w}}_{0}^{T} {\varvec{w}}_{0} }}{{\left\| {\overline{\varvec{w}}_{0} } \right\|^{8} \left\| {\tilde{x}} \right\|^{4} }}} \right]}}} \end{aligned} . $$
(A1)

From the paper [23] we have \(\left\| {\tilde{x}} \right\|^{2} \approx (L - 2)\sigma_{{i,\tilde{\varvec{x}}}}^{2}\) and the length \(L\) of the subband adaptive filter is large, so (A1) can be further simplified as:

$$ \begin{array}{*{20}l} {\frac{{2E\left[ {\tilde{\varvec{w}}(t)^{T} \hat{\varvec{g}}_{TLMM - NSAF} ({\varvec{w}}(t))} \right]}}{{E\left[ {\hat{\varvec{g}}_{TLMM - NSAF} ({\varvec{w}}(t))^{T} \hat{\varvec{g}}_{TLMM - NSAF} ({\varvec{w}}(t))} \right]}}} \hfill \\ { \approx 2\frac{{E\left[ {\frac{{e_{i,D}^{2} }}{{\left\| {\overline{\varvec{w}}_{0} } \right\|^{{2}} \left\| {\tilde{x}} \right\|^{2} }}} \right]}}{{E\left[ {\frac{{e_{i,D}^{2} \left\| {\tilde{x}} \right\|^{2} }}{{\left\| {\overline{\varvec{w}}_{0} } \right\|^{{4}} \left\| {\tilde{x}} \right\|^{4} }}} \right]}} = 2\left( {\left\| {{\varvec{w}}_{0} } \right\|^{2} + \theta_{i} } \right)} \hfill \\ \end{array} . $$
(A2)

Appendix B

Using (36) we have:

$$ \begin{aligned} & E\left[ {{\varvec{r}}({\varvec{w}}_{0} ){\varvec{r}}({\varvec{w}}_{0} )^{T} } \right] \\ { = } & \sum\limits_{i = 0}^{N - 1} {E\left[ {\frac{{e_{i,D}^{2} \tilde{x}_{i} \left( t \right)\tilde{x}_{{\text{i}}} \left( t \right)^{T} }}{{\left\| {\overline{\varvec{w}}_{0} } \right\|^{4} \left\| {\tilde{x}_{i} \left( t \right)} \right\|^{4} }} + \frac{{e_{i,D}^{3} \left( t \right){\varvec{w}}_{0} \tilde{x}_{i} \left( t \right)^{T} }}{{\left\| {\overline{\varvec{w}}_{0} } \right\|^{6} \left\| {\tilde{x}_{i} \left( t \right)} \right\|^{4} }}} \right.} \left. { + \frac{{e_{i,D}^{3} \left( z \right)\tilde{x}_{i} \left( z \right){\varvec{w}}_{0}^{T} }}{{\left\| {\overline{\varvec{w}}_{0} } \right\|^{6} \left\| {\tilde{x}_{i} \left( z \right)} \right\|^{4} }}\frac{{e_{i,D}^{4} \left( z \right){\varvec{w}}_{0} {\varvec{w}}_{0}^{T} }}{{\left\| {\overline{\varvec{w}}_{0} } \right\|^{8} \left\| {\tilde{x}_{i} \left( z \right)} \right\|^{4} }}} \right] \\ = & \frac{1}{{\left\| {\overline{\varvec{w}}_{0} } \right\|^{4} }}\sum\limits_{i = 0}^{N - 1} {\left\{ {\frac{{E\left[ {e_{i,D}^{2} \left( t \right)\tilde{x}_{i} \left( t \right)\tilde{x}_{i} \left( t \right)^{T} } \right]}}{{\left\| {\tilde{x}_{i} \left( t \right)} \right\|^{4} }} + \frac{{E\left[ {e_{i,D}^{3} \left( t \right){\varvec{w}}_{0} \tilde{x}_{i} \left( t \right)^{T} } \right]}}{{\left\| {\overline{\varvec{w}}_{0} } \right\|^{2} \left\| {\tilde{x}_{i} \left( t \right)} \right\|^{4} }}} \right.} \\ \quad & \left. { + \frac{{E\left[ {e_{i,D}^{3} \left( t \right)\tilde{x}_{i} \left( t \right){\varvec{w}}_{0}^{T} } \right]}}{{\left\| {\overline{\varvec{w}}_{0} } \right\|^{2} \left\| {\tilde{x}_{i} \left( t \right)} \right\|^{4} }} + \frac{{E\left[ {e_{i,D}^{4} \left( t \right)} \right]{\varvec{w}}_{0} {\varvec{w}}_{0}^{T} }}{{\left\| {\overline{\varvec{w}}_{0} } \right\|^{4} \left\| {\tilde{x}_{i} \left( t \right)} \right\|^{4} }}} \right\} \\ \end{aligned} $$
(B1)

Using the properties of the Gaussian distribution and Assumption 1, it is easy to verify that

$$ \begin{aligned} E\left[ {e_{i,D}^{2} \left( t \right)} \right] = & E\left[ {\left( {v_{i} \left( t \right) - {\text{u}}_{i}^{T} \left( t \right){\varvec{w}}_{0} } \right)^{2} } \right] \\ = & E\left[ {v_{i} \left( t \right)^{2} } \right] + E\left[ {\left( {{\text{u}}_{i}^{T} \left( t \right){\varvec{w}}_{0} } \right)^{2} } \right] \\ = & \sigma_{i}^{2} \parallel \overline{\varvec{w}}_{0} \parallel^{2} \\ \end{aligned} $$
(B2)

and

$$ \begin{gathered} E\left[ {e_{i,D}^{4} \left( t \right)} \right] = \, E\left[ {\left( {v_{i} \left( t \right) - {\text{u}}_{i}^{T} \left( t \right){\varvec{w}}_{0} } \right)^{4} } \right] \hfill \\ = 3\left\{ {E\left[ {\left( {v_{i} \left( t \right) - {\text{u}}_{i}^{T} \left( t \right){\varvec{w}}_{0} } \right)^{2} } \right]} \right\}^{2} \hfill \\ = 3\sigma_{i}^{4} \parallel \overline{\varvec{w}}_{0} \parallel^{4} \hfill \\ \end{gathered} $$
(B3)

Due to the mathematical definition of expectation, when \(a\) and \(b\) do not satisfy the independence condition, \(E[ab] \ne E[a]E[b]\). Then the expected term in B1 is calculated as:

$$ \begin{aligned} & E\left[ {e_{i,D}^{2} \left( t \right)\tilde{x}_{i} \left( t \right)\tilde{x}_{i} \left( t \right)^{T} } \right] \\ = & E\left[ {\left( {v_{n} - {\text{u}}_{i}^{T} \left( t \right){\varvec{w}}_{0} } \right)^{2} {\mathbf{R}} + \left( {v_{n} - {\text{u}}_{i}^{T} \left( t \right){\varvec{w}}_{0} } \right)^{2} \tilde{x}_{i} \left( t \right){\text{u}}_{i}^{T} \left( t \right)} \right. \\ \quad & + \left( {v_{n} - {\text{u}}_{i}^{T} \left( t \right){\varvec{w}}_{0} } \right)^{2} {\text{u}}_{i} \left( t \right)\tilde{x}_{i} \left( t \right)^{T} \\ \quad & \left. { + \left( {v_{n} - {\text{u}}_{i}^{T} \left( t \right){\varvec{w}}_{0} } \right)^{2} {\text{u}}_{i} \left( t \right){\text{u}}_{i}^{T} \left( t \right)} \right] \\ = & \sigma_{i,in}^{2} \parallel \overline{\varvec{w}}_{0} \parallel^{2} \left( {{\mathbf{R}} + \sigma_{i,in}^{2} {\text{I}}} \right) \\ \end{aligned} $$
(B4)

and

$$ \begin{aligned} & E\left[ {\left( {v_{i} \left( t \right) - {\text{u}}_{i}^{T} \left( t \right){\varvec{w}}_{0} } \right)^{3} \tilde{x}_{i} \left( t \right){\varvec{w}}_{0}^{T} } \right] \\ = & E\left[ {v_{i} \left( t \right)^{3} {\text{u}}_{i} \left( t \right){\varvec{w}}_{0}^{T} - 3v_{i} \left( t \right)^{2} \left( {{\text{u}}_{i}^{T} \left( t \right){\varvec{w}}_{0} } \right){\text{u}}_{i} \left( t \right){\varvec{w}}_{0}^{T} } \right. \\ \quad & \left. { + 3v_{i} \left( t \right)\left( {{\text{u}}_{i}^{T} \left( t \right){\varvec{w}}_{0} } \right)^{2} {\text{u}}_{i} \left( t \right){\varvec{w}}_{0}^{T} - \left( {{\text{u}}_{i}^{T} \left( t \right){\varvec{w}}_{0} } \right)^{3} {\text{u}}_{i} \left( t \right){\varvec{w}}_{0}^{T} } \right] \\ = & - 3\sigma_{i,in}^{4} \parallel \overline{\varvec{w}}_{0} \parallel^{2} {\varvec{w}}_{0} {\varvec{w}}_{0}^{{\text{T}}} \\ \end{aligned} $$
(B5)

in the same way, we have

$$ E\left[ {\left( {v_{i} \left( t \right) - {\text{u}}_{i}^{T} \left( t \right){\varvec{w}}_{0} } \right)^{3} {\varvec{w}}_{0} \tilde{x}_{i} \left( t \right)^{T} } \right] = - 3\sigma_{i,in}^{4} \parallel \overline{\varvec{w}}_{0} \parallel^{2} {\varvec{w}}_{0} {\varvec{w}}_{0}^{{\text{T}}} $$
(B6)

where \({\mathbf{R}} = E\left[ {x_{i} \left( t \right)x_{i}^{T} \left( t \right)} \right]\). Substituting (B3) − (B6) into (B1) results in (36).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Cao, Z. & Chen, Y. Robust Total Least Mean M-Estimate Normalized Subband Filter Adaptive Algorithm Under EIV Model in Impulsive Noise. Circuits Syst Signal Process 44, 338–364 (2025). https://doi.org/10.1007/s00034-024-02841-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-024-02841-9

Keywords