Skip to main content
Log in

An Evaluation of Dimensionality Reduction and Classification Techniques for Cardiac Disease Diagnosis from ECG Signals with Various Deep Learning Classifiers

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Classification of cardiac diseases from electrocardiogram signals is essential for enhancing patient results to minimize healthcare costs, early detection and accurate diagnosis. This research investigates the integration of dimensionality reduction methods with various deep learning classifiers to improve the accuracy and efficient classification of cardiac disease. Uniform Manifold Approximation and Projection combined with Principal Component Analysis is used for dimensionality reduction, that captures both global and local data structures. Deep learning classifiers with convolutional neural networks, capsule networks, recurrent neural networks, graph neural networks, deep long short-term memory and automatical attention-based convolutional neural networks are employed for classification. The Adaptive spiral Flying Sparrow Search algorithm optimizes classifier parameters for enhance accuracy. Performance is evaluated through various metrics, with area under the receiver operating characteristic curve, accuracy, F1-Score, precision and recall. The proposed method's outcomes are compared with and without optimization to demonstrate the efficiency and attains 92.16%, 96.15%, 91.95%, 94.65%, 91.45% and 92.85% accuracy respectively for each classification method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. S.R. Breesha, S.S. Vinsley, Automated extraction of fetal ECG signal features using twinned filter and integrated methodologies. Circuits Syst. Signal Process. 43(2), 661–683 (2024)

    Article  Google Scholar 

  2. S.S. Dambal, M.K. Doddananjedevaru, S.B. Gopalakrishna, A hybrid feature dimension reduction and SVM for a classification of heart rate variability. Int. J. Intell. Eng. Syst. 16, 104–112 (2023)

    MATH  Google Scholar 

  3. S. Daphin Lilda, R. Jayaparvathy, A. Balaji, An efficient machine learning based ventricular late potential detection and classification technique for cardiac healthcare. Concurr. Comput. Pract. Exp. (2022). https://doi.org/10.1002/cpe.7279

    Article  MATH  Google Scholar 

  4. S. Das, M. Sultana, S. Bhattacharya, D. Sengupta, D. De, Xai–reduct: accuracy preservation despite dimensionality reduction for heart disease classification using explainable AI. J. Supercomput. 79, 18167–18197 (2023)

    Article  Google Scholar 

  5. B. Dhananjay, J. Sivaraman, Analysis and classification of heart rate using CatBoost feature ranking model. Biomed. Signal Process. Control 68, 102610 (2021)

    Article  MATH  Google Scholar 

  6. C. Ding, S. Wang, X. Jin, Z. Wang, J. Wang, A novel transformer-based ECG dimensionality reduction stacked auto-encoders for arrhythmia beat detection. Med. Physics. 50, 5897–5912 (2023)

    Article  MATH  Google Scholar 

  7. L.T. Duong, T.T.H. Doan, C.Q. Chu, P.T. Nguyen, Fusion of edge detection and graph neural networks to classifying electrocardiogram signals. Expert Syst. Appl. 225, 120107 (2023)

    Article  MATH  Google Scholar 

  8. Y. Fang, J. Shi, Y. Huang, T. Zeng, Y. Ye, L. Su, D. Zhu, J. Huang, Electrocardiogram signal classification in the diagnosis of heart disease based on RBF neural network. Comput. Math. Methods Med. 2022, 1–9 (2022)

    MATH  Google Scholar 

  9. A.L. Golande, T. Pavankumar, Optical electrocardiogram based heart disease prediction using hybrid deep learning. J. Big Data. (2023). https://doi.org/10.1186/s40537-023-00820-6

    Article  MATH  Google Scholar 

  10. S. Jamil, M. Rahman, A novel deep-learning-based framework for the classification of cardiac arrhythmia. J. Imaging 8, 70 (2022)

    Article  MATH  Google Scholar 

  11. Y. Jiao, H. Qi, J. Wu, Capsule network assisted electrocardiogram classification model for smart healthcare. Biocybern. Biomed. Eng. 42, 543–555 (2022)

    Article  MATH  Google Scholar 

  12. P. Jyothi, G. Pradeepini, HDPSANN: an efficient heart disease prediction system using a soft swish artificial neural network based on ECG signals. Int. J. Intell Syst. Appl. Eng. 11, 671–684 (2023)

    MATH  Google Scholar 

  13. S. Karthik, M. Santhosh, M.S. Kavitha, A.C. Paul, Automated deep learning based cardiovascular disease diagnosis using ECG signals. Comput. Syst. Sci. Eng. 42, 183–199 (2022)

    Article  Google Scholar 

  14. S. Kuila, N. Dhanda, S. Joardar, Feature extraction and classification of ECG signals through Dimension Reduction. Lecture Notes Electrical Eng. 223–233 (2022)

  15. S. Kuila, N. Dhanda, S. Joardar, ECG signal classification and arrhythmia detection using ELM-RNN. Multimed. Tools Appl. 81, 25233–25249 (2022)

    Article  Google Scholar 

  16. M.A. Kumar, A. Chakrapani, Classification of ECG signal using FFT based improved Alexnet classifier. PLoS ONE 17, e0274225 (2022)

    Article  MATH  Google Scholar 

  17. S. Kusuma, K.R. Jothi, Heart disease classification using multiple K-PCA and hybrid deep learning approach. Comput. Syst. Sci. Eng. 41, 1273–1289 (2022)

    Article  MATH  Google Scholar 

  18. X. Liu, H. Wang, Z. Li, L. Qin, Deep learning in ECG diagnosis: a review. Knowl. Based Syst. 227, 107187 (2021)

    Article  MATH  Google Scholar 

  19. M. Malik, T. Dua, Snigdha, Biomedical signal processing: ECG signal analysis using machine learning in matlab. Recent Adv. Metrology. (2022). https://doi.org/10.1007/978-981-19-2468-2_14

    Article  MATH  Google Scholar 

  20. R. Nagulapalli, K. Hayatleh, S. Barker, P. Georgiou, F.J. Lidgey, A high value, linear and tunable cmos pseudo-resistor for biomedical applications. J. Circ. Syst. Comput. 28(06), 1950096 (2019)

    Article  MATH  Google Scholar 

  21. R. Nagulapalli, K. Hayatleh, S. Barker, S. Zourob, N. Yassine, S. Raparthy, A. Tammam, A novel high CMRR trans-impedance instrumentation amplifier for biomedical applications. Analog Integr. Circ. Signal Process. 98, 233–241 (2019)

    Article  Google Scholar 

  22. R. Nagulapalli, K. Hayatleh, S. Barker, S. Zourob, N. Yassine, S. Sridevi, A PVT insensitive programmable amplifier for biomedical applications. in 2017 International Conference Microelectronic Devices, Circuits and Systems, (ICMDCS). IEEE, pp. 1–5 (2017)

  23. C. Ouyang, Y. Qiu, D. Zhu, Adaptive spiral flying sparrow search algorithm. Sci. Programm. 2021, 1–16 (2021)

    MATH  Google Scholar 

  24. K. Ramasamy, K. Balakrishnan, D. Velusamy, Detection of cardiac arrhythmias from ECG signals using FBSE and jaya optimized ensemble random subspace K-nearest neighbor algorithm. Biomed. Signal Process. Control 76, 103654 (2022)

    Article  MATH  Google Scholar 

  25. K. Ramasamy, K. Balakrishnan, D. Velusamy, Classification of inter-patient’s cardiac arrhythmias in ECG signals with enhanced JAYA optimized TQWT parameters and stacked ensemble algorithm. Soft. Comput. 27, 11341–11356 (2023)

    Article  MATH  Google Scholar 

  26. M. Rashed-Al-Mahfuz, M.A. Moni, P. Lio, S.M.S. Islam, S. Berkovsky, M. Khushi, J.M. Quinn, Deep convolutional neural networksbased ECG beats classification to diagnose cardiovascular conditions. Biomed. Eng. Let. 11, 147–162 (2021)

    Article  Google Scholar 

  27. A. Rath, D. Mishra, G. Panda, S.C. Satapathy, K. Xia, Improved heart disease detection from ECG signal using deep learning based ensemble model. Sustain. Comput. Info. Syst. 35, 100732 (2022)

    Google Scholar 

  28. M. Roy, S. Majumder, A. Halder, U. Biswas, ECG-net: a deep LSTM autoencoder for detecting anomalous ECG. Eng. Appl. Artif. Intell. 124, 106484 (2023)

    Article  MATH  Google Scholar 

  29. S. Schmitz, U. Weidner, H. Hammer, A. Thiele, Evaluating uniform manifold approximation and projection for dimension reduction and visualization of polinsar features. ISPRS Ann. Photogramm. Remote Sens. Spat. Info. Sci. 1, 39–46 (2021)

    MATH  Google Scholar 

  30. M.G. Shankar, C.G. Babu, H. Rajaguru, Classification of cardiac diseases from ECG signals through bio inspired classifiers with adam and R-adam approaches for hyperparameters updation. Measurement 194, 111048 (2022)

    Article  MATH  Google Scholar 

  31. A. Tyagi, R. Mehra, Intellectual heartbeats classification model for diagnosis of heart disease from ECG signal using hybrid convolutional neural network with Goa. SN Appl. Sci. (2021). https://doi.org/10.1007/s42452-021-04185-4

    Article  MATH  Google Scholar 

Download references

Acknowledgements

None.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed equally to the work.

Corresponding author

Correspondence to S. Karthikeyani.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest.

Ethical Approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Informed Consent

For this type of analysis formal consent is not needed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthikeyani, S., Sasipriya, S. & Ramkumar, M. An Evaluation of Dimensionality Reduction and Classification Techniques for Cardiac Disease Diagnosis from ECG Signals with Various Deep Learning Classifiers. Circuits Syst Signal Process 44, 416–446 (2025). https://doi.org/10.1007/s00034-024-02845-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-024-02845-5

Keywords