Skip to main content
Log in

Recursive Windowed Variational Mode Decomposition

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The variational mode decomposition (VMD) and its variants aim to decompose a given signal into a set of narrow band modes. The analysis of these modes is usually based on the Fourier analysis. That is, the center frequencies of these modes are found without exploiting the local time varying information of the signal during the iteration in the existing algorithms for performing the VMD. To address this issue, this paper proposes a recursive windowed VMD (RWVMD) approach for performing the signal decomposition. First, the window is sliding across the signal. Then, the variational mode extraction is performed on each frame to obtain the first mode. Then, the difference between the first mode and the signal is computed to obtain the residual signal. The above process is repeated on the residual signal until the algorithm converges. The effectiveness of the RWVMD algorithm is demonstrated through the computer numerical simulations. It is found that the center frequency in the time frequency plane is more accurately matched with the characteristics of the original signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability

The data will be available if it is requested.

References

  1. A. Bhattacharyya, R.B. Pachori, A multivariate approach for patient-specific eeg seizure detection using empirical wavelet transform. IEEE Trans. Biomed. Eng. 64(9), 2003–2015 (2017). https://doi.org/10.1109/tbme.2017.2650259

    Article  MATH  Google Scholar 

  2. A. Bhattacharyya, L. Singh, R.B. Pachori, Fourier-Bessel series expansion based empirical wavelet transform for analysis of non-stationary signals. Digital Signal Process 78, 185–196 (2018). https://doi.org/10.1016/j.dsp.2018.02.020

    Article  MATH  Google Scholar 

  3. J.H. Che, B.W.-K. Ling, Q. Liu, Q. Miao, Variational mode decomposition-based sleep stage classification using multi-channel polysomnograms. SIViP 17(4), 1355–1363 (2022). https://doi.org/10.1007/s11760-022-02343-8

    Article  Google Scholar 

  4. Q. Chen, J. Chen, X. Lang, L. Xie, N.U. Rehman, H. Su, Self-tuning variational mode decomposition. J. Franklin Institute (2021). https://doi.org/10.1016/j.jfranklin.2021.07.021

    Article  MathSciNet  MATH  Google Scholar 

  5. Q. Chen, L. Xie, H. Su, Multivariate nonlinear chirp mode decomposition. Signal Process. (2020). https://doi.org/10.1016/j.sigpro.2020.107667

    Article  MATH  Google Scholar 

  6. S. Chen, X. Dong, Z. Peng, W. Zhang, G. Meng, Nonlinear chirp mode decomposition: a variational method. IEEE Trans. Signal Process. 65(22), 6024–6037 (2017). https://doi.org/10.1109/tsp.2017.2731300

    Article  MathSciNet  MATH  Google Scholar 

  7. Y.-F. Chen, K. Atal, S.-Q. Xie, Q. Liu, A new multivariate empirical mode decomposition method for improving the performance of SSVEP-based brain–computer interface. J. Neural Eng. (2017). https://doi.org/10.1088/1741-2552/aa6a23

    Article  Google Scholar 

  8. Z. Chen, B.W.-K. Ling, Identification of wrist movements based on magnetoencephalograms via noise assisted multivariate empirical mode decomposition. Biomedical Signal Process. Control (2022). https://doi.org/10.1016/j.bspc.2021.103307

    Article  MATH  Google Scholar 

  9. K. Dragomiretskiy, D. Zosso, Variational mode decomposition. IEEE Trans. Signal Process. 62(3), 531–544 (2014). https://doi.org/10.1109/tsp.2013.2288675

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Gilles, Empirical wavelet transform. IEEE Trans. Signal Process. 61(16), 3999–4010 (2013). https://doi.org/10.1109/tsp.2013.2265222

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Guo, M.A. Al-Shudeifat, J. Yan, L.A. Bergman, D.M. McFarland, E.A. Butcher, Application of empirical mode decomposition to a Jeffcott rotor with a breathing crack. J. Sound Vib. 332(16), 3881–3892 (2013). https://doi.org/10.1016/j.jsv.2013.02.031

    Article  MATH  Google Scholar 

  12. J. Harmouche, D. Fourer, F. Auger, P. Borgnat, P. Flandrin, The sliding singular spectrum analysis: a data-driven nonstationary signal decomposition tool. IEEE Trans. Signal Process. 66(1), 251–263 (2018). https://doi.org/10.1109/tsp.2017.2752720

    Article  MathSciNet  MATH  Google Scholar 

  13. N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, H. H. Liu. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903–995(1998). https://doi.org/10.1098/rspa.1998.0193

  14. S. Huang, J. Zheng, H. Pan, J. Tong, Order-statistic filtering Fourier decomposition and its application to rolling bearing fault diagnosis. J. Vib. Control 28(13–14), 1605–1620 (2021). https://doi.org/10.1177/1077546321997598

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Li, Z. Li, W. Mo, A time varying filter approach for empirical mode decomposition. Signal Process. 138, 146–158 (2017). https://doi.org/10.1016/j.sigpro.2017.03.019

    Article  MATH  Google Scholar 

  16. Y. Li, G. Li, Y. Wei, B. Liu, X. Liang, Health condition identification of planetary gearboxes based on variational mode decomposition and generalized composite multi-scale symbolic dynamic entropy. ISA Trans. 81, 329–341 (2018). https://doi.org/10.1016/j.isatra.2018.06.001

    Article  MATH  Google Scholar 

  17. J. Lian, Z. Liu, H. Wang, X. Dong, Adaptive variational mode decomposition method for signal processing based on mode characteristic. Mech. Syst. Signal Process. 107, 53–77 (2018). https://doi.org/10.1016/j.ymssp.2018.01.019

    Article  MATH  Google Scholar 

  18. S.I. McNeill, Decomposing a signal into short-time narrow-banded modes. J. Sound Vib. 373, 325–339 (2016). https://doi.org/10.1016/j.jsv.2016.03.015

    Article  MATH  Google Scholar 

  19. S. Meignen, V. Perrier, A new formulation for empirical mode decomposition based on constrained optimization. IEEE Signal Process. Lett. 14(12), 932–935 (2007). https://doi.org/10.1109/lsp.2007.904706

    Article  MATH  Google Scholar 

  20. M. Nazari, S.M. Sakhaei, Variational mode extraction: a new efficient method to derive respiratory signals from ECG. IEEE J. Biomed. Health Inform. 22(4), 1059–1067 (2018). https://doi.org/10.1109/jbhi.2017.2734074

    Article  MATH  Google Scholar 

  21. M. Nazari, S.M. Sakhaei, Successive variational mode decomposition. Signal Process. (2020). https://doi.org/10.1016/j.sigpro.2020.107610

    Article  MATH  Google Scholar 

  22. B. Pang, M. Nazari, G. Tang, Recursive variational mode extraction and its application in rolling bearing fault diagnosis. Mechanical Syst. Signal Process. (2022). https://doi.org/10.1016/j.ymssp.2021.108321

    Article  MATH  Google Scholar 

  23. N. Rehman, D.P. Mandic, Multivariate empirical mode decomposition. Proc. R. Soc. A: Math., Phys. Eng Sci 466(2117), 1291–1302 (2009). https://doi.org/10.1098/rspa.2009.0502

    Article  MathSciNet  MATH  Google Scholar 

  24. Nu. Rehman, H. Aftab, Multivariate variational mode decomposition. IEEE Trans. Signal Proc. (2019). https://doi.org/10.1109/tsp.2019.2951223

    Article  MathSciNet  MATH  Google Scholar 

  25. Y. Wang, R. Markert, Filter bank property of variational mode decomposition and its applications. Signal Process. 120, 509–521 (2016). https://doi.org/10.1016/j.sigpro.2015.09.041

    Article  MATH  Google Scholar 

  26. Z. Wu, N.E. Huang, Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Data Sci. Adapt. Anal. 1, 1–41 (2009)

    Article  MATH  Google Scholar 

  27. X. Xie, Illumination preprocessing for face images based on empirical mode decomposition. Signal Process. 103, 250–257 (2014). https://doi.org/10.1016/j.sigpro.2013.11.038

    Article  MATH  Google Scholar 

  28. H. Xiyuan, P. Silong, H. Wen-Liang, EMD revisited: a new understanding of the envelope and resolving the mode-mixing problem in AM-FM signals. IEEE Trans. Signal Process. 60(3), 1075–1086 (2012). https://doi.org/10.1109/tsp.2011.2179650

    Article  MathSciNet  MATH  Google Scholar 

  29. J.-R. Yeh, J.-S. Shieh, N.E. Huang, Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method. Adv. Adapt. Data Anal. 02(02), 135–156 (2011). https://doi.org/10.1142/s1793536910000422

    Article  MathSciNet  MATH  Google Scholar 

  30. S. Yu, J. Ma, Complex variational mode decomposition for slop-preserving denoising. IEEE Trans. Geosci. Remote Sens. 56(1), 586–597 (2018). https://doi.org/10.1109/tgrs.2017.2751642

    Article  MATH  Google Scholar 

  31. T. Zhang, W. Chen, M. Li, AR based quadratic feature extraction in the VMD domain for the automated seizure detection of EEG using random forest classifier. Biomed. Signal Process. Control 31, 550–559 (2017). https://doi.org/10.1016/j.bspc.2016.10.001

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This paper was supported partly by the National Nature Science Foundation of China (no. U1701266, no. 61671163 and no. 62071128), the Team Project of the Education Ministry of the Guangdong Province (no. 2017KCXTD011), the Guangdong Higher Education Engineering Technology Research Center for Big Data on Manufacturing Knowledge Patent (no. 501130144) and the Hong Kong Innovation and Technology Commission, Enterprise Support Scheme (no. S/E/070/17).

Funding

National Nature Science Foundation of China,no. U1701266,Bingo Wing-Kuen Ling,no. 61671163,Bingo Wing-Kuen Ling,no. 62071128,Bingo Wing-Kuen Ling,Team Project of the Education Ministry of the Guangdong Province,no. 2017KCXTD011,Bingo Wing-Kuen Ling,Guangdong Higher Education Engineering Technology Research Center for Big Data on Manufacturing Knowledge Patent,no. 501130144,Bingo Wing-Kuen Ling,Hong Kong Innovation and Technology Commission,Enterprise Support Scheme,no. S/E/070/17,Bingo Wing-Kuen Ling

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingo Wing-Kuen Ling.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

For the discrete realization, \(\omega\) is usually sampled using a finite number of points. Let \(M\) be the total number of the sampling points and \(\tilde{\omega }_{1} , \ldots ,\tilde{\omega }_{M}\) be these sampling points. Then, we have

$$ {\hat{\mathbf{u}}}_{k,\tau } = \left[ {\begin{array}{*{20}c} {\hat{u}_{k} \left( {\tilde{\omega }_{1} ,\tau } \right)} & {\hat{u}_{k} \left( {\tilde{\omega }_{2} ,\tau } \right)} & \ldots & {\hat{u}_{k} \left( {\tilde{\omega }_{M} ,\tau } \right)} \\ \end{array} } \right]^{T} , $$
(40)
$$ {\hat{\mathbf{f}}}_{\tau } = \left[ {\begin{array}{*{20}c} {\hat{f}\left( {\tilde{\omega }_{1} ,\tau } \right)} & {\hat{f}\left( {\tilde{\omega }_{2} ,\tau } \right)} & \ldots & {\hat{f}\left( {\tilde{\omega }_{M} ,\tau } \right)} \\ \end{array} } \right]^{T} , $$
(41)
$$ {\hat{\mathbf{f}}}_{r,\tau } = \left[ {\begin{array}{*{20}c} {\hat{f}_{r} \left( {\tilde{\omega }_{1} ,\tau } \right)} & {\hat{f}_{r} \left( {\tilde{\omega }_{2} ,\tau } \right)} & \ldots & {\hat{f}_{r} \left( {\tilde{\omega }_{M} ,\tau } \right)} \\ \end{array} } \right]^{T} , $$
(42)
$$ {\hat{\mathbf{\lambda }}} = \left[ {\begin{array}{*{20}c} {\lambda \left( {\tilde{\omega }_{1} ,\tau } \right)} & {\lambda \left( {\tilde{\omega }_{2} ,\tau } \right)} & \ldots & {\lambda \left( {\tilde{\omega }_{M} ,\tau } \right)} \\ \end{array} } \right]^{T} $$
(43)

and

$$ {\mathbf{W}} = \left[ {\begin{array}{*{20}c} {\tilde{\omega }_{1} - \omega_{k} \left( \tau \right)} & {} & {} & {} \\ {} & {\tilde{\omega }_{2} - \omega_{k} \left( \tau \right)} & {} & {} \\ {} & {} & \ddots & {} \\ {} & {} & {} & {\tilde{\omega }_{M} - \omega_{k} \left( \tau \right)} \\ \end{array} } \right]. $$
(44)

The discrete realization of the augmented Lagrangian function can be expressed as:

$$ \begin{gathered} L\left( {{\hat{\mathbf{u}}}_{k,\tau } ,\omega_{k} \left( \tau \right),{\hat{\mathbf{f}}}_{r,\tau } ,{\hat{\mathbf{\lambda }}}} \right) = 4\alpha \sum\nolimits_{m = 1}^{M} {\left( {\tilde{\omega }_{m} - \omega_{k} \left( \tau \right)} \right)^{2} \left| {\hat{u}_{k} \left( {\tilde{\omega }_{m} ,\tau } \right)} \right|^{2} } + 2\sum\nolimits_{m = 1}^{M} {\left| {\frac{{\hat{f}_{r} \left( {\tilde{\omega }_{m} ,\tau } \right)}}{{\alpha \left( {\tilde{\omega }_{m} - \omega_{k} \left( \tau \right)} \right)^{2} }}} \right|^{2} } \\ + 2\sum\nolimits_{m = 1}^{M} {\left| {\hat{f}\left( {\tilde{\omega }_{m} ,\tau } \right) - \hat{u}_{k} \left( {\tilde{\omega }_{m} ,\tau } \right) - \hat{f}_{r} \left( {\tilde{\omega }_{m} ,\tau } \right) + \frac{{\hat{\lambda }\left( {\tilde{\omega }_{m} ,\tau } \right)}}{2}} \right|^{2} - \left| {\frac{{\hat{\lambda }\left( {\tilde{\omega }_{m} ,\tau } \right)}}{2}} \right|^{2} } \\ = 4\alpha \left\| {{\mathbf{W\hat{u}}}_{k,\tau } } \right\|_{2}^{2} + \frac{2}{{\alpha^{2} }}\left\| {{\mathbf{W}}^{ - 2} {\hat{\mathbf{f}}}_{r,\tau } } \right\|_{2}^{2} + 2\left( {\left\| {{\hat{\mathbf{f}}}_{\tau } - {\hat{\mathbf{u}}}_{k,\tau } - {\hat{\mathbf{f}}}_{r,\tau } + \frac{{{\hat{\mathbf{\lambda }}}}}{2}} \right\|_{2}^{2} - \left\| {\frac{{{\hat{\mathbf{\lambda }}}}}{2}} \right\|_{2}^{2} } \right). \\ \end{gathered} $$
(45)

Here, the gradients are as follow:

$$ \frac{{\partial L\left( {{\hat{\mathbf{u}}}_{k,\tau } ,\omega_{k} \left( \tau \right),{\hat{\mathbf{f}}}_{r,\tau } ,{\hat{\mathbf{\lambda }}}} \right)}}{{\partial {\hat{\mathbf{u}}}_{k,\tau } }} = 4\alpha {\mathbf{W}}^{2} {\hat{\mathbf{u}}}_{k,\tau } - 2\left( {{\hat{\mathbf{f}}}_{\tau } - {\hat{\mathbf{u}}}_{k,\tau } - {\hat{\mathbf{f}}}_{r,\tau } + \frac{{{\hat{\mathbf{\lambda }}}}}{2}} \right), $$
(46)
$$ \frac{{\partial L\left( {{\hat{\mathbf{u}}}_{k,\tau } ,\omega_{k} \left( \tau \right),{\hat{\mathbf{f}}}_{r,\tau } ,{\hat{\mathbf{\lambda }}}} \right)}}{{\partial \omega_{k} \left( \tau \right)}} = - 8\alpha \sum\nolimits_{m = 1}^{M} {\left( {\tilde{\omega }_{m} - \omega_{k} \left( \tau \right)} \right)\left| {\hat{u}_{k} \left( {\tilde{\omega }_{m} ,\tau } \right)} \right|^{2} } - \frac{8}{{\alpha^{2} }}\sum\nolimits_{m = 1}^{M} {\frac{{\left| {\hat{f}_{r} \left( {\tilde{\omega }_{m} ,\tau } \right)} \right|^{2} }}{{\left( {\tilde{\omega }_{m} - \omega_{k} \left( \tau \right)} \right)^{5} }}} $$
(47)

and

$$ \frac{{\partial L\left( {{\hat{\mathbf{u}}}_{k,\tau } ,\omega_{k} \left( \tau \right),{\hat{\mathbf{f}}}_{r,\tau } ,{\hat{\mathbf{\lambda }}}} \right)}}{{\partial {\hat{\mathbf{f}}}_{r,\tau } }} = \frac{2}{{\alpha^{2} }}{\mathbf{W}}^{ - 4} {\hat{\mathbf{f}}}_{r,\tau } - 2\left( {{\hat{\mathbf{f}}}_{\tau } - {\hat{\mathbf{u}}}_{k,\tau } - {\hat{\mathbf{f}}}_{r,\tau } + \frac{{{\hat{\mathbf{\lambda }}}}}{2}} \right). $$
(48)

As the parameter \(\alpha\) is usually large, (A.7) can be approximated as:

$$ \frac{{\partial L\left( {{\hat{\mathbf{u}}}_{k,\tau } ,\omega_{k} \left( \tau \right),{\hat{\mathbf{f}}}_{r,\tau } ,{\hat{\mathbf{\lambda }}}} \right)}}{{\partial \omega_{k} \left( \tau \right)}} \approx - 8\alpha \sum\nolimits_{m = 1}^{M} {\left( {\tilde{\omega }_{m} - \omega_{k} \left( \tau \right)} \right)\left| {\hat{u}_{k} \left( {\tilde{\omega }_{m} ,\tau } \right)} \right|^{2} } . $$
(49)

Set the gradients to zeros, we have:

$$ 4\alpha {\mathbf{W}}^{2} {\hat{\mathbf{u}}}_{k,\tau } - 2\left( {{\hat{\mathbf{f}}}_{\tau } - {\hat{\mathbf{u}}}_{k,\tau } - {\hat{\mathbf{f}}}_{r,\tau } + \frac{{{\hat{\mathbf{\lambda }}}}}{2}} \right) = 0, $$
(50a)
$$ \left( {{\mathbf{I}} + 2\alpha {\mathbf{W}}^{2} } \right){\hat{\mathbf{u}}}_{k,\tau } = \left( {{\hat{\mathbf{f}}}_{\tau } - {\hat{\mathbf{f}}}_{r,\tau } + \frac{{{\hat{\mathbf{\lambda }}}}}{2}} \right), $$
(50b)
$$ {\hat{\mathbf{u}}}_{k,\tau } = \left( {{\mathbf{I}} + 2\alpha {\mathbf{W}}^{2} } \right)^{ - 1} \left( {{\hat{\mathbf{f}}}_{\tau } - {\hat{\mathbf{f}}}_{r,\tau } + \frac{{{\hat{\mathbf{\lambda }}}}}{2}} \right), $$
(50c)
$$ \sum\nolimits_{m = 1}^{M} {\left( {\tilde{\omega }_{m} - \omega_{k} \left( \tau \right)} \right)\left| {\hat{u}_{k} \left( {\tilde{\omega }_{m} ,\tau } \right)} \right|^{2} } = 0, $$
(51)
$$ \left( {\sum\nolimits_{m = 1}^{M} {\left| {\hat{u}_{k} \left( {\tilde{\omega }_{m} ,\tau } \right)} \right|^{2} } } \right)\omega_{k} \left( \tau \right) = \sum\nolimits_{m = 1}^{M} {\tilde{\omega }_{m} \left| {\hat{u}_{k} \left( {\tilde{\omega }_{m} ,\tau } \right)} \right|^{2} } , $$
(52)
$$ \omega_{k} \left( \tau \right) = \frac{{\sum\nolimits_{m = 1}^{M} {\tilde{\omega }_{m} \left| {\hat{u}_{k} \left( {\tilde{\omega }_{m} ,\tau } \right)} \right|^{2} } }}{{\left( {\sum\nolimits_{m = 1}^{M} {\left| {\hat{u}_{k} \left( {\tilde{\omega }_{m} ,\tau } \right)} \right|^{2} } } \right)}}, $$
(53)
$$ \frac{2}{{\alpha^{2} }}{\mathbf{W}}^{ - 4} {\hat{\mathbf{f}}}_{r,\tau } - 2\left( {{\hat{\mathbf{f}}}_{\tau } - {\hat{\mathbf{u}}}_{k,\tau } - {\hat{\mathbf{f}}}_{r,\tau } + \frac{{{\hat{\mathbf{\lambda }}}}}{2}} \right) = 0, $$
(54a)
$$ \left( {{\mathbf{I}} + \frac{1}{{\alpha^{2} }}{\mathbf{W}}^{ - 4} } \right){\hat{\mathbf{f}}}_{r,\tau } = \left( {{\hat{\mathbf{f}}}_{\tau } - {\hat{\mathbf{u}}}_{k,\tau } + \frac{{{\hat{\mathbf{\lambda }}}}}{2}} \right) $$
(54b)

and

$$ {\hat{\mathbf{f}}}_{r,\tau } = \left( {{\mathbf{I}} + \frac{1}{{\alpha^{2} }}{\mathbf{W}}^{ - 4} } \right)^{ - 1} \left( {{\hat{\mathbf{f}}}_{\tau } - {\hat{\mathbf{u}}}_{k,\tau } + \frac{{{\hat{\mathbf{\lambda }}}}}{2}} \right). $$
(54c)

This further implies:

$$ \hat{u}_{k} \left( {\tilde{\omega }_{m} ,\tau } \right) = \frac{{\hat{f}\left( {\tilde{\omega }_{m} ,\tau } \right) - \hat{f}_{r} \left( {\tilde{\omega }_{m} ,\tau } \right) + \frac{{\hat{\lambda }\left( {\tilde{\omega }_{m} ,\tau } \right)}}{2}}}{{1 + 2\alpha \left( {\tilde{\omega }_{m} - \omega_{k} \left( \tau \right)} \right)^{2} }} $$
(55)

and

$$ \begin{gathered} \hat{f}_{r} \left( {\tilde{\omega }_{m} ,\tau } \right) = \frac{{\hat{f}\left( {\tilde{\omega }_{m} ,\tau } \right) - \hat{u}_{k} \left( {\tilde{\omega }_{m} ,\tau } \right) + \frac{{\hat{\lambda }\left( {\tilde{\omega }_{m} ,\tau } \right)}}{2}}}{{1 + \frac{1}{{\alpha^{2} \left( {\tilde{\omega }_{m} - \omega_{k} \left( \tau \right)} \right)^{4} }}}} \\ = \frac{{\alpha^{2} \left( {\tilde{\omega }_{m} - \omega_{k} \left( \tau \right)} \right)^{4} \left( {\hat{f}\left( {\tilde{\omega }_{m} ,\tau } \right) - \hat{u}_{k} \left( {\tilde{\omega }_{m} ,\tau } \right) + \frac{{\hat{\lambda }\left( {\tilde{\omega }_{m} ,\tau } \right)}}{2}} \right)}}{{1 + \alpha^{2} \left( {\tilde{\omega }_{m} - \omega_{k} \left( \tau \right)} \right)^{4} }} \\ \end{gathered} $$
(56)

for \(m = 1,...,M\). By representing (53), (55), (56) in the continuous form, we have:

$$ \hat{u}_{k} \left( {\omega ,\tau } \right) = \frac{{\hat{f}\left( {\omega ,\tau } \right) - \hat{f}_{r} \left( {\omega ,\tau } \right) + \frac{{\hat{\lambda }\left( {\omega ,\tau } \right)}}{2}}}{{1 + 2\alpha \left( {\omega - \omega_{k} \left( \tau \right)} \right)^{2} }}, $$
(57)
$$ \omega_{k} \left( \tau \right) = \frac{{\int_{0}^{\infty } {\omega \left| {\hat{u}_{k,m} \left( {\omega ,\tau } \right)} \right|^{2} d\omega } }}{{\int_{0}^{\infty } {\left| {\hat{u}_{k,m} \left( {\omega ,\tau } \right)} \right|^{2} d\omega } }} $$
(58)

and

$$ \hat{f}_{r} \left( {\omega ,\tau } \right) = \frac{{\alpha^{2} \left( {\omega - \omega_{k} \left( \tau \right)} \right)^{4} \left( {\hat{f}\left( {\omega ,\tau } \right) - \hat{u}_{k} \left( {\omega ,\tau } \right) + \frac{{\hat{\lambda }\left( {\omega ,\tau } \right)}}{2}} \right)}}{{1 + \alpha^{2} \left( {\omega - \omega_{k} \left( \tau \right)} \right)^{4} }}. $$
(59)

Then, the ADMM updated rules can be obtained accordingly.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Ling, B.WK. & Xu, N. Recursive Windowed Variational Mode Decomposition. Circuits Syst Signal Process 44, 616–651 (2025). https://doi.org/10.1007/s00034-024-02864-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-024-02864-2

Keywords