Skip to main content
Log in

Root-Free Annihilating Filter Method for Sparse Signal Reconstruction

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Traditionally, annihilating filter approach (a.k.a Prony’s approach), universal finite rate of innovation (FRI), and compressed sensing algorithms have been presented to solve the sparse reconstruction problem when the measurement matrix has Fourier bases. However, annihilating filter approach requires computing the polynomial roots of the annihilating filter, and this fact yields an unstable recovery of sparse signal in the high noise environment. In this paper, we present a polynomial root-free annihilating filter approach for reconstructing sparse signals based on the padding of missing measurement values to acquired measurements. The method accomplishes complete reconstruction accuracy of sparse signals in the noiseless environment. Moreover, the superior reconstruction accuracy of the proposed root-free annihilating filter approach, in comparison with the traditional annihilating filter approach and universal FRI, is proved by experimental simulations in the existence of a low signal-to-noise ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data

Not applicable.

References

  1. T. Blu, P.L. Dragotti, M. Vetterli, P. Marziliano, L. Coulot, Sparse sampling of signal innovations. IEEE Signal Process. Mag. 25(2), 31–40 (2008)

    Article  MATH  Google Scholar 

  2. M. Brajović, I. Orović, M. Daković, S. Stanković, On the parameterization of hermite transform with application to the compression of qrs complexes. Sig. Process. 131, 113–119 (2017)

    Article  MATH  Google Scholar 

  3. J.A. Cadzow, Signal enhancement: a composite property mapping algorithm. IEEE Trans. Acoust. Speech Signal Process. 36(1), 49–62 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. S.S. Chen, D.L. Donoho, M.A. Saunders, Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. I. Dassios, D. Baleanu, Optimal solutions for singular linear systems of caputo fractional differential equations. Math. Methods Appl. Sci. 44(10), 7884–7896 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. I. Dassios, K. Fountoulakis, J. Gondzio, A preconditioner for a primal-dual newton conjugate gradient method for compressed sensing problems. SIAM J. Sci. Comput. 37(6), A2783–A2812 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. I.K. Dassios, Analytic loss minimization: theoretical framework of a second order optimization method. Symmetry 11(2), 136 (2019)

    Article  MATH  Google Scholar 

  8. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. D.L. Donoho, Y. Tsaig, Fast solution of \( l_{1} \)-norm minimization problems when the solution may be sparse. IEEE Trans. Inf. Theory 54(11), 4789–4812 (2008)

    Article  MATH  Google Scholar 

  10. D.L. Donoho, A. Maleki, A. Montanari, Message-passing algorithms for compressed sensing. Proc. Nat. Acad. Sci. 106(45), 18914–18919 (2009)

    Article  MATH  Google Scholar 

  11. P.L. Dragotti, M. Vetterli, T. Blu, Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets strang-fix. IEEE Trans. Signal Process. 55(5), 1741–1757 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. M.A. Hadi, S. Alshebeili, K. Jamil, F.E.A. El-Samie, Compressive sensing applied to radar systems: an overview. SIViP 9, 25–39 (2015)

    Article  MATH  Google Scholar 

  13. A. Hormati, M. Vetterli, Annihilating filter-based decoding in the compressed sensing framework. In: Wavelets XII, International Society for Optics and Photonics, vol. 6701, p. 670121 (2007)

  14. M. Lustig, D. Donoho, J.M. Pauly, Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Resonance Med.: Off. J. Int. Soc. Magn. Resonance Med. 58(6), 1182–1195 (2007)

    Article  MATH  Google Scholar 

  15. I. Maravic, M. Vetterli, Sampling and reconstruction of signals with finite rate of innovation in the presence of noise. IEEE Trans. Signal Process. 53(8), 2788–2805 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Oñativia, Y.M. Lu, P.L. Dragoni, Finite dimensional FRI, in 2014 IEEE International Conference on Acoustics. (Speech and Signal Processing (ICASSP), IEEE, 2014), pp. 1808–1812

  17. P.S. Reddy, B. Raghavendra, A. Narasimhadhan, Approximate finite rate of innovation based seismic reflectivity estimation. Circuits Syst. Signal Process. 43(10), 6399–6414 (2024)

    Article  MATH  Google Scholar 

  18. S. Song, J. Shen, Exponential-reproducing-kernel-based sparse sampling method for finite rate of innovation signal with arbitrary pulse echo position. Circuits Syst. Signal Process. 38(3), 1179–1193 (2019)

    Article  MATH  Google Scholar 

  19. L. Stanković, E. Sejdić, S. Stanković, M. Daković, I. Orović, A tutorial on sparse signal reconstruction and its applications in signal processing. Circuits Syst. Signal Process. 38(3), 1206–1263 (2019)

    Article  MATH  Google Scholar 

  20. P. Sudhakar Reddy, A. Premkumar, B. Saikiran, B.S. Raghavendra, A.V. Narasimhadhan, Finite rate of innovation signal reconstruction using residual neural networks. in 2020 IEEE 4th conference on information & communication technology (CICT), IEEE, pp. 1–6 (2020)

  21. P. Sudhakar Reddy, B.S. Raghavendra, A.V. Narasimhadhan, Magnetic resonance image reconstruction by nullspace based finite rate of innovation framework. in Proceedings of the twelfth Indian conference on computer vision, graphics and image processing, pp. 1–5 (2021)

  22. P. Sudhakar Reddy, B. Raghavendra, A. Narasimhadhan, Universal discrete finite rate of innovation scheme for sparse signal reconstruction. Circuits Syst. Signal Process. 42(4), 2346–2365 (2023)

    Article  MATH  Google Scholar 

  23. P. Sudhakar Reddy, B.S. Raghavendra, A.V. Narasimhadhan, Sparse-prony fri signal reconstruction. Signal Image Video Process. 17(7), 3443–3449 (2023b)

  24. R. Tibshirani, Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B: Stat. Methodol. 58(1), 267–288 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. J.A. Tropp, A.C. Gilbert, Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. J.A. Urigüen, T. Blu, P.L. Dragotti, Fri sampling with arbitrary kernels. IEEE Trans. Signal Process. 61(21), 5310–5323 (2013)

    Article  MATH  Google Scholar 

  27. M. Vetterli, P. Marziliano, T. Blu, Sampling signals with finite rate of innovation. IEEE Trans. Signal Process. 50(6), 1417–1428 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. H.C. Xin, B.Z. Li, X. Bai, A novel sub-nyquist FRI sampling and reconstruction method in linear canonical transform domain. Circuits Syst. Signal Process. 40(12), 6173–6192 (2021)

  29. J. Zhang, S. Chang, L. Zhang, Y. Su, X. Fu, Sparse wavelet transform for underwater acoustic image compressed sensing. in 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO), IEEE, pp. 1–4 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sudhakar Reddy.

Ethics declarations

Conflict of interest

Authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudhakar Reddy, P., Raghavendra, B.S. & Narasimhadhan, A.V. Root-Free Annihilating Filter Method for Sparse Signal Reconstruction. Circuits Syst Signal Process 44, 670–683 (2025). https://doi.org/10.1007/s00034-024-02871-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-024-02871-3

Keywords