Skip to main content
Log in

Arthur and Merlin as Oracles

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

We study some problems solvable in deterministic polynomial time given oracle access to the (promise version of) Arthur–Merlin class. Our main results are the following:

$$\circ\quad{\rm BPP}^{{\rm NP}}_{||} \subseteq {{\rm P}^{{{\rm pr}{\rm AM}}}_{||}}.$$
$$\circ\quad{{\rm S}_2^p} \subseteq {{\rm P}^{{{\rm pr}{\rm AM}}}}.$$

In addition to providing new upper bounds for the classes \({{{\rm S}_2^p}}\) and \({{\rm BPP}^{{\rm NP}}_{||}}\) , these results are interesting from a derandomization perspective. In conjunction with the hitting set generator construction of Miltersen and Vinodchandran (Computational Complexity 14(3), 2005), we get that \({{{\rm S}_2^p} = {{\rm P}^{\rm NP}}}\) and \({{\rm BPP}^{{\rm NP}}_{||} = {\rm P}^{{\rm NP}}_{||}}\) , under the hardness hypothesis associated with derandomizing the class AM. This gives an alternative proof of the same result obtained by Shaltiel and Umans (Computational Complexity 15(4), 2007).

We also show that if NP has polynomial size circuits, then the polynomial time hierarchy (PH) collapses as PH =  PprMA. Under the same hypothesis, we also derive a FPprMA algorithm for learning circuits for SAT; this improves the ZPPNP algorithm for the same problem by Bshouty et al. (JCSS 52(3), 1996).

Finally, we design a FPprAM algorithm for the problem of finding near-optimal strategies for succinctly presented zero-sum games. For the same problem, Fortnow et al. (Computational Complexity 17(3), 2008a) described a ZPPNP algorithm. One advantage of our FPprAM algorithm is that it can be derandomized using the construction of Miltersen and Vinodchandran yielding a FPNP algorithm, under a hardness hypothesis used for derandomizing AM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Althöfer I.: On sparse approximations to randomized strategies and convex combinations. Linear Algebra and its Applications 199, 339–355 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Arvind V., Köbler J.: On pseudorandomness and resource-bounded measure. Theoretical Computer Science 255(1–2), 205–221 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Arvind V., Köbler J., Schöning U., Schuler R.: If NP has polynomial-size circuits, then MA=AM. Theoretical Computer Science 137(2), 279–282 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Babai L., Moran S.: Arthur-Merlin games: A randomized proof system, and a hierarchy of complexity classes. Journal of Computer and System Sciences 36(2), 254–276 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Bshouty N., Cleve R., Gavaldà R., Kannan S., Tamon C.: Oracles and queries that are sufficient for exact learning. Journal of Computer and System Sciences 52(3), 421–433 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Cai J.: \({{\rm S}_2^p \subseteq {\rm ZPP}^{{\rm NP}}}\) . Journal of Computer and System Sciences 73(1), 25–35 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Canetti R.: More on BPP and the polynomial-time hierarchy. Information Processing Letters 57(5), 237–241 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • V. Chakaravarthy and S. Roy, Oblivious symmetric alternation. In Proceedings of the 23rd Annual Symposium on Theoretical Aspects of Computer Science, vol. 3884 of Lecture Notes in Computer Science, 2006, 230–241.

  • V. Chakaravarthy and S. Roy, Finding irrefutable certificates for \({{\rm S}_2^p}\) via Arthur and Merlin. In Proceedings of the 25th Annual Symposium on Theoretical Aspects of Computer Science, vol. 1 of LIPIcs. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik, Germany, 2008a, 157–168.

  • V. Chakaravarthy and S. Roy, Arthur and Merlin as oracles. In Proceedings of the 33rd International Symposium on Mathematical Foundations of Computer Science, vol. 5162 of Lecture Notes in Computer Science, 2008b, 229–240.

  • D. Du and K. Ko, Computational Complexity. John Wiley and sons, 2000.

  • J. Feigenbaum, D. Koller, and P. Shor, A game-theoretic classification of interactive complexity classes. In Proceedings of the 10th Annual IEEE Conference on Computational Complexity, 1995, 227–237.

  • Fortnow L., Impagliazzo R., Kabanets V., Umans C.: On the complexity of succinct zero-sum games. Computational Complexity 17(3), 353–376 (2008a)

    Article  MathSciNet  MATH  Google Scholar 

  • Fortnow L., Pavan A., Sengupta S.: Proving SAT does not have small circuits with an application to the two queries problem. Journal of Computer and System Sciences 74(3), 358–363 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • O. Goldreich and A. Wigderson, Improved derandomization of BPP using a hitting set generator. In RANDOM-APPROX, vol. 1671 of Lecture Notes in Computer Science, 1999, 131–137.

  • O. Goldreich and D. Zuckerman, Another proof that \({{\rm BPP} \subseteq {\rm PH}}\) (and more). Technical Report TR97–045, ECCC, 1997.

  • R. Impagliazzo and A. Wigderson., P=BPP unless E has subexponential circuits: Derandomizing the XOR lemma. In Proceedings of the 29th ACM Symposium on Theory of Computing, 1997, 220–229.

  • R. Karp and R. Lipton, Some connections between nonuniform and uniform complexity classes. In Proceedings of the 12th ACM Symposium on Theory of Computing, 1980, 302–309.

  • Klivans A., van Melkebeek D.: Graph nonisomorphism has subexponential size proofs unless the polynomial hierarchy collapses. SIAM Journal on Computing 31(5), 1501–1526 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Köbler J., Watanabe O.: New collapse consequences of NP having small circuits. SIAM Journal on Computing 28(1), 311–324 (1998)

    Article  MATH  Google Scholar 

  • R. Lipton and N. Young, Simple strategies for large zero-sum games with applications to complexity theory. In Proceedings of the 26th ACM Symposium on Theory of Computing, 1994, 734–740.

  • Miltersen P., Vinodchandran N.: Derandomizing Arthur-Merlin games using hitting sets. Computational Complexity 14(3), 256–279 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • J. Neumann, Zur theorie der gesellschaftspiel. Mathematische Annalen 100(1928).

  • Newman J.: Private vs. common random bits in communication complexity. Information Processing Letters 39, 67–71 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Nisan N., Wigderson A.: Hardness vs randomness. Journal of Computer and System Sciences 49(2), 149–167 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • G. Owen, Game Theory. Academic Press, 1982.

  • C. Papadimitriou, Computational Complexity. Addison-Wesley, 1994.

  • Russell A., Sundaram R.: Symmetric alternation captures BPP. Computational Complexity 7(2), 152–162 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Shaltiel R., Umans C.: Pseudorandomness for approximate counting and sampling. Computational Complexity 15(4), 298–341 (2007)

    Article  MathSciNet  Google Scholar 

  • M. Sipser, A complexity theoretic approach to randomness. In Proceedings of the 15th ACM Symposium on Theory of Computing, 1983, 330–335.

  • L. Stockmeyer, The complexity of approximate counting. In Proceedings of the 15th ACM Symposium on Theory of Computing, 1983, 118–126.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkatesan T. Chakaravarthy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakaravarthy, V.T., Roy, S. Arthur and Merlin as Oracles. comput. complex. 20, 505–558 (2011). https://doi.org/10.1007/s00037-011-0015-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00037-011-0015-3

Keywords

Subject classification

Navigation