Skip to main content
Log in

The NOF Multiparty Communication Complexity of Composed Functions

  • Published:
computational complexity Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We study the k-party “number on the forehead” communication complexity of composed functions \({f \circ \vec{g}}\), where \({f:\{0,1\}^n \to \{\pm 1\}}\), \({\vec{g} = (g_1,\ldots,g_n)}\), \({g_i : \{0,1\}^k \to \{0,1\}}\) and for \({(x_1,\ldots,x_k) \in (\{0,1\}^n)^k}\), \({f \circ \vec{g}(x_1,\ldots,x_k) = f(\ldots,g_i(x_{1,i},\ldots,x_{k,i}), \ldots)}\). When \({\vec{g} = (g, g,\ldots, g)}\), we denote \({f \circ \vec{g}}\) by \({f \circ g}\). We show that there is an \({O({\rm log}^3 n)}\) cost simultaneous protocol for SYM \({\circ g}\) when k >  1 + log  n, SYM is any symmetric function and g is any function. When k >  1 +  2 log  n, our simultaneous protocol applies to SYM \({\circ \, \vec{g}}\) with \({\vec{g}}\) being a vector of n arbitrary functions. We also get a non-simultaneous protocol for SYM \({\circ \, \vec{g}}\) of cost \({O(n/2^k \cdot {\rm log}\, n+ k {\rm log}\, n)}\) for any k ≥  2. In the setting of k ≤  1 + log  n, we study more closely functions of the form MAJORITY \({\circ g}\), MOD m \({\circ g}\) and NOR \({\circ g}\), where the latter two are generalizations of the well-known and studied functions generalized inner product and disjointness, respectively. We characterize the communication complexity of these functions with respect to the choice of g. In doing so, we answer a question posed by Babai et al. (SIAM J Comput 33:137–166, 2003) and determine the communication complexity of MAJORITYQCSB k , where QCSB k is the “quadratic character of the sum of the bits” function.

In the second part of our paper, we utilize the connection between the ‘number on the forehead’ model and Ramsey theory to construct a large set without a k-dimensional corner (k-dimensional generalization of a k-term arithmetic progression) in \({(\mathbb{F}_{2}^{n})^k}\), thereby obtaining the first non-trivial bound on the corresponding Ramsey number. Furthermore, we give an explicit coloring of [N] ×  [N] without a monochromatic two-dimensional corner and use this to obtain an explicit three-party protocol of cost \({O(\sqrt{n})}\) for the EXACT N function. For x 1,x 2,x 3 n-bit integers, EXACT N (x 1,x 2,x 3) = −1 iff x 1x 2x 3 = N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Noga Alon, Yossi Matias, Mario Szegedy (1999) The Space Complexity of Approximating the Frequency Moments. Journal of Computer and System Sciences 58: 137–147

    Article  MATH  MathSciNet  Google Scholar 

  • László Babai, Anna Gál, Peter G. Kimmel & Satyanarayana V. Lokam (2003). Communication Complexity of Simultaneous Messages. SIAM Journal on Computing 33, 137–166.

  • László Babai, Peter G. Kimmel & Satyanarayana V. Lokam (1995). Simultaneous messages vs. communication. In In 12th Annual Symposium on Theoretical Aspects of Computer Science (STACS), 361–372. Springer.

  • László Babai, Noam Nisan, Mario Szegedy (1992) Multiparty protocols, pseudorandom generators for logspace, and time-space trade-offs. Journal of Computer and System Sciences 45(2): 204–232

    Article  MATH  MathSciNet  Google Scholar 

  • Michael Bateman & Nets H. Katz (2011). New bounds on cap sets. URL http://arxiv.org/abs/1101.5851v2.

  • Paul Beame, Matei David, Toniann Pitassi & Philipp Woelfel (2010). Separating Deterministic from Randomized Multiparty Communication Complexity. Theory of Computing 6(1), 201–225. URL http://www.theoryofcomputing.org/articles/v006a009.

  • Paul Beame& Dang-Trinh Huynh-Ngoc (2009). Multiparty Communication Complexity and Threshold Circuit Size of AC 0. In Proceedings of the 2009 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’09, 53–62. IEEE Computer Society, Washington, DC, USA. URL http://dx.doi.org/10.1109/FOCS.2009.12.

  • Felix A. Behrend (1946) On Sets of Integers Which Contain No Three Terms in Arithmetical Progression. Proceedings of the National Academy of Sciences 32: 331–332

    Article  MathSciNet  Google Scholar 

  • Richard Beigel, William Gasarch & James Glenn (2006). The Multiparty Communication Complexity of Exact T: Improved Bounds and New Problems. In Mathematical Foundations of Computer Science 2006, Rastislav Královic & Pawel Urzyczyn, editors, volume 4162 of Lecture Notes in Computer Science, 146–156. Springer Berlin Heidelberg. URL http://dx.doi.org/10.1007/11821069_13.

  • Richard Beigel, Jun Tarui (1994) On ACC. Computational Complexity 4: 350–366

    Article  MATH  MathSciNet  Google Scholar 

  • Eric Blais, Joshua Brody & Kevin Matulef (2011). Property Testing Lower Bounds via Communication Complexity. In In Proceedings of the 2011 IEEE 26th Annual Conference on Computational Complexity (CCC).

  • Jean Bourgain (1999). On triples in arithmetic progression. Geometric and Functional Analysis.

  • Ashok K. Chandra, Merrick L. Furst & Richard J. Lipton (1983). Multi-party protocols. In Proceedings of the fifteenth annual ACM symposium on Theory of computing, STOC ’83, 94–99. ACM, New York, NY, USA. URL http://doi.acm.org/10.1145/800061.808737.

  • Arkadev Chattopadhyay (2008). Circuits, Communication and Polynomials. Ph.D. thesis, McGill University.

  • Arkadev Chattopadhyay & Anil Ada (2008). Multiparty communication complexity of disjointness. Technical report, In Electronic Colloquium on Computational Complexity (ECCC) TR08–002.

  • Arkadev Chattopadhyay, Andreas Krebs, Michal Koucky, Mario Szegedy, Pascal Tesson & Denis Thérien (2007). Languages with bounded multiparty communication complexity. In Proceedings of the 24th annual conference on Theoretical aspects of computer science, STACS’07, 500–511. Springer-Verlag, Berlin, Heidelberg. URL http://portal.acm.org/citation.cfm?id=1763424.1763484.

  • Benny Chor & Oded Goldreich (1988). Unbiased bits from sources of weak randomness and probabilistic communication complexity. SIAM J. Comput. 17(2), 230–261. ISSN 0097-5397. URL http://dx.doi.org/10.1137/0217015.

  • Fan R.K. Chung, Prasad Tetali (1993) Communication complexity and quasi randomness. SIAM Journal on Discrete Mathematics 6(1): 110–123

    Article  MATH  MathSciNet  Google Scholar 

  • Vincent Conitzer & Tuomas Sandholm (2004). Communication complexity as a lower bound for learning in games. In International Conference on Machine Learning.

  • Michael Elkin (2011) An improved construction of progression-free sets. Israel Journal of Mathematics 184((1): 93–128

    MATH  MathSciNet  Google Scholar 

  • Jürgen Forster, Matthias Krause, Satyanarayana V. Lokam, Rustam Mubarakzjanov, Niels Schmitt & Hans ulrich Simon (2001). Relations Between Communication Complexity, Linear Arrangements, and Computational Complexity. In Foundations of Software Technology and Theoretical Computer Science, 171–182.

  • Harry Furstenberg, Yitzhak Katznelson (1978) An ergodic Szemerédi theorem for commuting transformations. Journal d’Analyse Mathematique 34: 275–291

    Article  MathSciNet  Google Scholar 

  • W. Timothy Gowers (2001). A new proof of Szemerédi’s theorem. Geometric and Functional Analysis 11, 465–588.

    Google Scholar 

  • W. Timothy Gowers (2007). Hypergraph regularity and the multidimensional Szemerédi theorem. Annals of Mathematics 166, 897–946.

    Google Scholar 

  • W. Timothy Gowers (2010). Decompositions, approximate structure, transference, and the Hahn-Banach theorem. Bulletin of the London Mathematical Society 42, 573–606.

    Google Scholar 

  • Ben Green (2005). Surveys in Combinatorics 2005, chapter Finite field models in additive combinatorics, 1–27. London Math. Soc. Lecture Notes 327. Cambridge Univ Press.

  • Vince Grolmusz (1994) The BNSLower Bound for Multi-party Protocols Is Nearly Optimal. Information and Computation 112: 51–54

    Article  MATH  MathSciNet  Google Scholar 

  • Vince Grolmusz (1995). Separating the Communication Complexities of MOD m and MOD p Circuits. In Proceedings of the 33rd Annual Symposium on Foundations of Computer Science (FOCS), 278–287.

  • Vince Grolmusz (1998) Circuits and Multi-Party Protocols. Computational Complexity 7: 1–18

    Article  MATH  MathSciNet  Google Scholar 

  • Johan Håstad, Mikael Goldmann (1991) On The Power Of Small-Depth Threshold Circuits. Computational Complexity 1: 610–618

    Google Scholar 

  • Hartmut Klauck (2007) Lower Bounds for Quantum Communication Complexity. Siam Journal on Computing 37: 20–46

    Article  MATH  MathSciNet  Google Scholar 

  • Eyal Kushilevitz & Noam Nisan (1997). Communication complexity. Cambridge University Press.

  • Michael T. Lacey & William McClain (2007). On an Argument of Shkredov on Two-Dimensional Corners. Online Journal of Analytic Combinatorics.

  • Troy Lee, Gideon Schechtman & Adi Shraibman (2009). Lower bounds on quantum multiparty communication complexity. In In Proceedings of the 24th Annual IEEE Conference on Computational Complexity (CCC), 254–262.

  • Troy Lee, Adi Shraibman (2009) Disjointness is Hard in the Multiparty Number-on-the-Forehead Model. Computational Complexity 18: 309–336

    Article  MATH  MathSciNet  Google Scholar 

  • Peter Bro Miltersen, Noam Nisan, Shmuel Safra & Avi Wigderson (1998). On Data Structures and Asymmetric Communication Complexity. Journal of Computer and System Sciences 57(1), 37–49. URL http://www.sciencedirect.com/science/article/pii/S002200009891577X.

    Google Scholar 

  • Ashley Montanaro & Tobias Osborne (2009). On the communication complexity of XOR functions. Arxiv preprint arXiv:0909.3392.

  • N. Nisan (1993). The communication complexity of threshold gates. Combinatorica.

  • Noam Nisan, Ilya Segal (2006) The communication requirements of efficient allocations and supporting prices. Journal of Economic Theory 129: 192–224

    Article  MATH  MathSciNet  Google Scholar 

  • Noam Nisan, Avi Wigderson (1993) Rounds in Communication Complexity Revisited. SIAM Journal on Computing 22: 211–219

    Article  MATH  MathSciNet  Google Scholar 

  • Kevin O’Bryant (2011). Sets of integers that do not contain long arithmetic progressions. The Electronic Journal of Combinatorics 18(1), 59.

    Google Scholar 

  • Beame Paul, Toniann Pitassi & Nathan Segerlind (2007). Lower Bounds for Lovász-Schrijver Systems and Beyond Follow from Multiparty Communication Complexity. SIAM Journal on Computing 37, 845–869. URL http://portal.acm.org/citation.cfm?id=1328865.1328873.

    Google Scholar 

  • Pavel Pudlák (2003). An Application of Hindman’s Theorem to a Problem on Communication Complexity. Combinatorics, Probability & Computing 12, 661–670. URL http://portal.acm.org/citation.cfm?id=970118.970134.

  • Pavel Pudlák (2006). Personal communication.

  • Ran Raz (1995). Fourier Analysis for Probabilistic Communication Complexity. Computational Complexity 5, 205–221.

    Google Scholar 

  • Ran Raz (2000) The BNS-Chung criterion for multi-party communication complexity. Computational Complexity 9(2): 113–122

    Article  MATH  MathSciNet  Google Scholar 

  • Alexander Razborov (2003) Quantum communication complexity of symmetric predicates. Izvestiya: Mathematics 67(1): 145–159

    Article  MathSciNet  Google Scholar 

  • Klaus F. Roth (1953). On Certain Sets of Integers. Journal of The London Mathematical Society-second Series s1-28, 104–109.

  • Tom Sanders (2011) On Roths theorem on progressions. Annals of Mathematics 174: 619–636

    Article  MATH  MathSciNet  Google Scholar 

  • Alexander A. Sherstov (2007). The pattern matrix method for lower bounds on quantum communication. In In Proceedings of the 40th Symposium on Theory of Computing (STOC), 85–94.

  • Alexander A. Sherstov (2012). The multiparty communication complexity of set disjointness. In Proceedings of the 44th symposium on Theory of Computing, STOC ’12, 525–548. ACM, New York, NY, USA. URL http://doi.acm.org/10.1145/2213977.2214026.

  • Yaoyun Shi, Zhiqiang Zhang (2009) Communication complexities of symmetric XOR functions. Quantum Information and Computation 9: 255–263

    MATH  MathSciNet  Google Scholar 

  • Yaoyun Shi & Yufan Zhu (2009). Quantum communication complexity of block-composed functions. Quantum Information and Computation 9, 444–460. URL http://portal.acm.org/citation.cfm?id=2011791.2011798.

  • Ilya D. Shkredov (2006a). On a Generalization of Szemerédi’s Theorem. Proc. London Math. Soc. 93, 723–760.

  • Ilya D. Shkredov (2006b). On a problem of Gowers. Izvestiya: Mathematics 70, 385.

  • Victor Shoup (2009). A computational introduction to number theory and algebra. Cambridge University Press.

  • Roman Smolensky (1987). Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In Proceedings of the nineteenth annual ACM symposium on Theory of computing, STOC ’87, 77–82. ACM, New York, NY, USA. URL http://doi.acm.org/10.1145/28395.28404.

  • Pascal Tesson (2003). Computational complexity questions related to finite semigroups and monoids. Ph.D. thesis, McGill University.

  • Emanuele Viola & Avi Wigderson (2008). Norms, XOR Lemmas, and Lower Bounds for Polynomials and Protocols. Theory of Computing 4(1), 137–168. URL http://www.theoryofcomputing.org/articles/v004a007.

  • Andrew C. Yao (1979). Some complexity questions related to distributive computing (Preliminary Report). In Proceedings of the eleventh annual ACM symposium on Theory of computing, 209–213. ACM Press, New York, NY, USA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadev Chattopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ada, A., Chattopadhyay, A., Fawzi, O. et al. The NOF Multiparty Communication Complexity of Composed Functions. comput. complex. 24, 645–694 (2015). https://doi.org/10.1007/s00037-013-0078-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00037-013-0078-4

Keywords

Subject Classification

Navigation