Skip to main content
Log in

Incompressible Functions, Relative-Error Extractors, and the Power of Nondeterministic Reductions

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

A circuit C compresses a function \({f : \{0,1\}^n\rightarrow \{0,1\}^m}\) if given an input \({x\in \{0,1\}^n}\), the circuit C can shrink x to a shorter ℓ-bit string x′ such that later, a computationally unbounded solver D will be able to compute f(x) based on x′. In this paper we study the existence of functions which are incompressible by circuits of some fixed polynomial size \({s=n^c}\). Motivated by cryptographic applications, we focus on average-case \({(\ell,\epsilon)}\) incompressibility, which guarantees that on a random input \({x\in \{0,1\}^n}\), for every size s circuit \({C:\{0,1\}^n\rightarrow \{0,1\}^{\ell}}\) and any unbounded solver D, the success probability \({\Pr_x[D(C(x))=f(x)]}\) is upper-bounded by \({2^{-m}+\epsilon}\). While this notion of incompressibility appeared in several works (e.g., Dubrov and Ishai, STOC 06), so far no explicit constructions of efficiently computable incompressible functions were known. In this work, we present the following results:

  1. (1)

    Assuming that E is hard for exponential size nondeterministic circuits, we construct a polynomial time computable boolean function \({f:\{0,1\}^n\rightarrow \{0,1\}}\) which is incompressible by size n c circuits with communication \({\ell=(1-o(1)) \cdot n}\) and error \({\epsilon=n^{-c}}\). Our technique generalizes to the case of PRGs against nonboolean circuits, improving and simplifying the previous construction of Shaltiel and Artemenko (STOC 14).

  2. (2)

    We show that it is possible to achieve negligible error parameter \({\epsilon=n^{-\omega(1)}}\) for nonboolean functions. Specifically, assuming that E is hard for exponential size \({\Sigma_3}\)-circuits, we construct a nonboolean function \({f:\{0,1\}^n\rightarrow \{0,1\}^m}\) which is incompressible by size n c circuits with \({\ell=\Omega(n)}\) and extremely small \({\epsilon=n^{-c} \cdot 2^{-m}}\). Our construction combines the techniques of Trevisan and Vadhan (FOCS 00) with a new notion of relative error deterministic extractor which may be of independent interest.

  3. (3)

    We show that the task of constructing an incompressible boolean function \({f:\{0,1\}^n\rightarrow \{0,1\}}\) with negligible error parameter \({\epsilon}\) cannot be achieved by “existing proof techniques”. Namely, nondeterministic reductions (or even \({\Sigma_i}\) reductions) cannot get \({\epsilon=n^{-\omega(1)}}\) for boolean incompressible functions. Our results also apply to constructions of standard Nisan-Wigderson type PRGs and (standard) boolean functions that are hard on average, explaining, in retrospect, the limitations of existing constructions. Our impossibility result builds on an approach of Shaltiel and Viola (STOC 08).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ajtai Miklós (1983) \({\Sigma_{1}^{1}}\)-Formulae on finite structures. Annals of Pure and Applied Logic 24(1): 1–48

    Article  MathSciNet  MATH  Google Scholar 

  • Benny Applebaum, Yuval Ishai, Eyal Kushilevitz (2010). From Secrecy to Soundness: Efficient Verification via Secure Computation. In ICALP (1), volume 6198 of Lecture Notes in Computer Science, 152–163. Springer.

  • Applebaum Benny, Ishai Yuval, Kushilevitz Eyal, Waters Brent (2015) Encoding Functions with Constant Online Rate, or How to Compress Garbled Circuit Keys. SIAM J. Comput. 44(2): 433–466

    Article  MathSciNet  MATH  Google Scholar 

  • Sergei Artemenko, Russell Impagliazzo, Valentine Kabanets & Ronen Shaltiel (2016). Pseudorandomness when the odds are against you. In Conference on Computational Complexity.

  • Sergei Artemenko & Ronen Shaltiel (2014a). Lower Bounds on the Query Complexity of Non-uniform and Adaptive Reductions Showing Hardness Amplification. Computational Complexity 23(1), 43–83.

  • Sergei Artemenko & Ronen Shaltiel (2014b). Pseudorandom generators with optimal seed length for non-boolean poly-size circuits. In STOC, 99–108. ACM.

  • Babai László, Fortnow Lance, Nisan Noam, Wigderson Avi (1993) BPP Has Subexponential Time Simulations Unless EXPTIME has Publishable Proofs. Computational Complexity 3: 307–318

    Article  MathSciNet  MATH  Google Scholar 

  • Babai László, Moran Shlomo (1988) Arthur-Merlin Games: A Randomized Proof System, and a Hierarchy of Complexity Classes. J. Comput. Syst. Sci. 36(2): 254–276

    Article  MathSciNet  MATH  Google Scholar 

  • Boaz Barak, Shien Jin Ong, Vadhan Salil P. (2007) Derandomization in Cryptography. SIAM J. Comput. 37(2): 380–400

    Article  MathSciNet  MATH  Google Scholar 

  • Bellare Mihir, Goldreich Oded, Petrank Erez (2000) Uniform Generation of NP-Witnesses Using an NP-Oracle. Inf. Comput. 163(2): 510–526

    Article  MathSciNet  MATH  Google Scholar 

  • Mihir Bellare & John Rompel (1994). Randomness-Efficient Oblivious Sampling. In FOCS, 276–287. IEEE Computer Society.

  • Bodlaender Hans L., Downey Rodney G., Fellows Michael R., Danny Hermelin (2009) On problems without polynomial kernels. J. Comput. Syst. Sci. 75(8): 423–434

    Article  MathSciNet  MATH  Google Scholar 

  • Arkadev Chattopadhyay & Rahul Santhanam (2012). Lower Bounds on Interactive Compressibility by Constant-Depth Circuits. In FOCS, 619–628. IEEE Computer Society.

  • Chor Benny, Goldreich Oded (1988) Unbiased Bits from Sources of Weak Randomness and Probabilistic Communication Complexity. SIAM J. Comput. 17(2): 230–261

    Article  MathSciNet  MATH  Google Scholar 

  • Kai-Min Chung, Yael Tauman Kalai & Salil P. Vadhan (2010). Improved Delegation of Computation Using Fully Homomorphic Encryption. In CRYPTO, volume 6223 of Lecture Notes in Computer Science, 483–501. Springer.

  • Francesco Davì, Stefan Dziembowski & Daniele Venturi (2010). Leakage-Resilient Storage. In SCN, volume 6280 of Lecture Notes in Computer Science, 121–137. Springer.

  • Holger Dell, Dieter van Melkebeek (2014) Satisfiability Allows No Nontrivial Sparsification unless the Polynomial-Time Hierarchy Collapses. J. ACM 61(4): 23–12327

    MathSciNet  MATH  Google Scholar 

  • Yevgeniy Dodis, Ariel Elbaz, Roberto Oliveira & Ran Raz (2004). Improved Randomness Extraction from Two Independent Sources. In APPROX-RANDOM, volume 3122 of Lecture Notes in Computer Science, 334–344. Springer.

  • Andrew Drucker (2013). Nondeterministic Direct Product Reductions and the Success Probability of SAT Solvers. In FOCS, 736–745. IEEE Computer Society.

  • Bella Dubrov & Yuval Ishai (2006). On the randomness complexity of efficient sampling. In STOC, 711–720. ACM.

  • Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, Vinod Vaikuntanathan (2014). Protecting Circuits from Computationally Bounded and Noisy Leakage. SIAM J. Comput. 43(5): 1564–1614

  • Feige Uriel, Lund Carsten (1997) On the Hardness of Computing the Permanent of Random Matrices. Computational Complexity 6(2): 101–132

    Article  MathSciNet  MATH  Google Scholar 

  • Fortnow Lance, Santhanam Rahul (2011) Infeasibility of instance compression and succinct PCPs for NP. J. Comput. Syst. Sci. 77(1): 91–106

    Article  MathSciNet  MATH  Google Scholar 

  • Furst Merrick L., Saxe James B., Sipser Michael (1984) Parity, Circuits, and the Polynomial-Time Hierarchy. Mathematical Systems Theory 17(1): 13–27

    Article  MathSciNet  MATH  Google Scholar 

  • Rosario Gennaro, Craig Gentry & Bryan Parno (2010). Non-interactive Verifiable Computing: Outsourcing Computation to Untrusted Workers. In CRYPTO, volume 6223 of Lecture Notes in Computer Science, 465–482. Springer.

  • Oded Goldreich & Leonid A. Levin (1989). A Hard-Core Predicate for all One-Way Functions. In STOC, 25–32. ACM.

  • Goldreich Oded, Micali Silvio, Wigderson Avi (1991) Proofs that Yield Nothing But Their Validity for All Languages in NP Have Zero-Knowledge Proof Systems. J. ACM 38(3): 691–729

    Article  MathSciNet  MATH  Google Scholar 

  • Oded Goldreich & Avi Wigderson (2002). Derandomization That Is Rarely Wrong from Short Advice That Is Typically Good. In RANDOM, volume 2483 of Lecture Notes in Computer Science, 209–223. Springer.

  • Shafi Goldwasser & Michael Sipser (1986). Private Coins versus Public Coins in Interactive Proof Systems. In STOC, 59–68. ACM.

  • Dan Gutfreund & Guy N. Rothblum (2008). The Complexity of Local List Decoding. In APPROX-RANDOM, volume 5171 of Lecture Notes in Computer Science, 455–468. Springer.

  • Gutfreund Dan, Shaltiel Ronen, Ta-Shma Amnon (2003) Uniform hardness versus randomness tradeoffs for Arthur-Merlin games. Computational Complexity 12(3-4): 85–130

    Article  MathSciNet  MATH  Google Scholar 

  • Gutfreund Dan, Shaltiel Ronen, Ta-Shma Amnon (2007) If NP Languages are Hard on the Worst-Case, Then it is Easy to Find Their Hard Instances. Computational Complexity 16(4): 412–441

    Article  MathSciNet  MATH  Google Scholar 

  • Dan Gutfreund & Amnon Ta-Shma (2007). Worst-Case to Average-Case Reductions Revisited. In APPROX-RANDOM, volume 4627 of Lecture Notes in Computer Science, 569–583. Springer.

  • Harnik Danny, Naor Moni (2010) On the Compressibility of NP Instances and Cryptographic Applications. SIAM J. Comput. 39(5): 1667–1713

    Article  MathSciNet  MATH  Google Scholar 

  • Russell Impagliazzo & Avi Wigderson (1997). P = BPP if E Requires Exponential Circuits: Derandomizing the XOR Lemma. In STOC, 220–229. ACM.

  • Impagliazzo Russell, Wigderson Avi (2001) Randomness vs Time: Derandomization under a Uniform Assumption. J. Comput. Syst. Sci. 63(4): 672–688

    Article  MathSciNet  MATH  Google Scholar 

  • Jerrum Mark, Valiant Leslie G., Vazirani Vijay V. (1986) Random Generation of Combinatorial Structures from a Uniform Distribution. Theor. Comput. Sci. 43: 169–188

    Article  MathSciNet  MATH  Google Scholar 

  • Yael Tauman Kalai, Ran Raz & Ron D. Rothblum (2014). How to delegate computations: the power of no-signaling proofs. In STOC, 485–494. ACM.

  • Klivans Adam, van Melkebeek Dieter (2002) Graph Nonisomorphism Has Subexponential Size Proofs Unless the Polynomial-Time Hierarchy Collapses. SIAM J. Comput. 31(5): 1501–1526

    Article  MathSciNet  MATH  Google Scholar 

  • Richard J. Lipton (1989). New Directions In Testing. In Distributed Computing And Cryptography, volume 2 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 191–202. DIMACS/AMS.

  • Chi-Jen Lu, Shi-Chun Tsai & Hsin-Lung Wu (2007). Impossibility Results on Weakly Black-Box Hardness Amplification. In FCT, volume 4639 of Lecture Notes in Computer Science, 400–411. Springer.

  • Lu Chi-Jen, Tsai Shi-Chun, Wu Hsin-Lung (2008) On the Complexity of Hardness Amplification. IEEE Transactions on Information Theory 54(10): 4575–4586

    Article  MathSciNet  MATH  Google Scholar 

  • Peter Bro Miltersen & N. V. Vinodchandran (2005) Derandomizing Arthur-Merlin Games using Hitting Sets. Computational Complexity 14(3): 256–279.

  • Noam Nisan, Avi Wigderson (1994) Hardness vs Randomness. J. Comput. Syst. Sci. 49(2): 149–167

    Article  MathSciNet  MATH  Google Scholar 

  • Igor Carboni Oliveira & Rahul Santhanam (2015). Majority is Incompressible by AC^0[p] Circuits. In Conference on Computational Complexity, volume 33 of LIPIcs, 124–157. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.

  • Shaltiel Ronen (2002). Recent Developments in Explicit Constructions of Extractors. Bulletin of the EATCS 77: 67–95

    MathSciNet  MATH  Google Scholar 

  • Ronen Shaltiel (2011a). An Introduction to Randomness Extractors. In ICALP (2), volume 6756 of Lecture Notes in Computer Science, 21–41. Springer.

  • Ronen Shaltiel (2011b). Weak Derandomization of Weak Algorithms: Explicit Versions of Yao’s Lemma. Computational Complexity 20(1), 87–143.

  • Shaltiel Ronen, Umans Christopher (2005) Simple extractors for all min-entropies and a new pseudorandom generator. J. ACM 52(2): 172–216

    Article  MathSciNet  MATH  Google Scholar 

  • Shaltiel Ronen, Umans Christopher (2006) Pseudorandomness for Approximate Counting and Sampling. Computational Complexity 15(4): 298–341

    Article  MathSciNet  MATH  Google Scholar 

  • Shaltiel Ronen, Umans Christopher (2009) Low-End Uniform Hardness versus Randomness Tradeoffs for AM. SIAM J. Comput. 39(3): 1006–1037

    Article  MathSciNet  MATH  Google Scholar 

  • Shaltiel Ronen, Viola Emanuele (2010) Hardness Amplification Proofs Require Majority. SIAM J. Comput. 39(7): 3122–3154

    MathSciNet  MATH  Google Scholar 

  • Michael Sipser (1983). A Complexity Theoretic Approach to Randomness. In STOC, 330–335. ACM.

  • Larry J. Stockmeyer (1983). The Complexity of Approximate Counting (Preliminary Version). In STOC, 118–126. ACM.

  • Sudan Madhu, Trevisan Luca, Vadhan Salil P. (2001) Pseudorandom Generators without the XOR Lemma. J. Comput. Syst. Sci. 62(2): 236–266

    Article  MathSciNet  MATH  Google Scholar 

  • Ta-Shma Amnon, Zuckerman David (2004) Extractor codes. IEEE Transactions on Information Theory 50(12): 3015–3025

    Article  MathSciNet  MATH  Google Scholar 

  • Luca Trevisan & Salil P. Vadhan (2000). Extracting Randomness from Samplable Distributions. In FOCS, 32–42. IEEE Computer Society.

  • Trevisan Luca, Vadhan Salil P. (2007) Pseudorandomness and Average-Case Complexity Via Uniform Reductions. Computational Complexity 16(4): 331–364

    Article  MathSciNet  MATH  Google Scholar 

  • Vazirani Umesh V. (1987) Strong communication complexity or generating quasirandom sequences form two communicating semi-random sources. Combinatorica 7(4): 375–392

    Article  MathSciNet  MATH  Google Scholar 

  • Viola Emanuele (2005) The complexity of constructing pseudorandom generators from hard functions. Computational Complexity 13(3-4): 147–188

    Article  MathSciNet  MATH  Google Scholar 

  • Emanuele Viola (2006). The Complexity of Hardness Amplification and Derandomization. Ph.D. thesis, Harvard University.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benny Applebaum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Applebaum, B., Artemenko, S., Shaltiel, R. et al. Incompressible Functions, Relative-Error Extractors, and the Power of Nondeterministic Reductions. comput. complex. 25, 349–418 (2016). https://doi.org/10.1007/s00037-016-0128-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00037-016-0128-9

Keywords

Subject classification

Navigation