Skip to main content
Log in

Some observations on holographic algorithms

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

We define the notion of diversity for families of finite functions and express the limitations of a simple class of holographic algorithms, called elementary algorithms, in terms of limitations on diversity. We show that this class of elementary algorithms is too weak to solve the Boolean circuit value problem, or Boolean satisfiability, or the permanent. The lower bound argument is a natural but apparently novel combination of counting and algebraic dependence arguments that is viable in the holographic framework. We go on to describe polynomial time holographic algorithms that go beyond the elementarity restriction in the two respects that they use exponential size fields, and multiple oracle calls in the form of polynomial interpolation. These new algorithms, which use bases of three components, compute the parity of the following quantities for degree three planar undirected graphs: the number of 3-colorings up to permutation of colors, the number of connected vertex covers, and the number of induced forests or feedback vertex sets. In each case, the parity can also be computed for any one slice of the problem, in particular for colorings where the first color is used a certain number of times, or where the connected vertex cover, feedback set or induced forest has a certain number of nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbanchon, R.: On unique graph 3-colorability and parsimonious reductions in the plane. Theoretical Computer Science 319(1–3), 455–482 (2004)

    Article  MathSciNet  Google Scholar 

  2. Bubley, R.; Dyer, M.; Greenhill, C.; Jerrum, M.: On approximately counting colourings of small degree graphs. SIAM J. Comput 29, 387–400 (1999)

    Article  MathSciNet  Google Scholar 

  3. Cai, J.-Y.; Choudhary, V.: Some Results on Matchgates and Holographic Algorithms. International Journal of Software and Informatics 1, 1 (2007)

    MATH  Google Scholar 

  4. Cai, J.-Y.; Choudhary, V.; Lu, P.: On the Theory of Matchgate Computations. Theory of Computing Systems 45(1), 108–132 (2009)

    Article  MathSciNet  Google Scholar 

  5. Cai, J.-Y.; Gorenstein, A.: Matchgates Revisited. Theory of Computing 10, 167–197 (2014)

    Article  MathSciNet  Google Scholar 

  6. J.-Y. Cai, H. Guo & T. Williams (2014). The Complexity of Counting Edge Colorings and a Dichotomy for Some Higher Domain Holant Problems. FOCS 601–610.

  7. J.-Y. Cai, P. Lu & M. Xia (2008). Holographic Algorithms by Fibonacci Gates and Holographic Reductions for Hardness. FOCS 644–653.

  8. S. Chen (2016). Basis collapse for holographic algorithms over all domain sizes. STOC 776–789.

  9. Fernau, H.; Manlove, D.: Vertex and edge covers with clustering properties: Complexity and algorithms. Journal of Discrete Algorithms 7(2), 149–167 (2009)

    Article  MathSciNet  Google Scholar 

  10. Garey, M.R.; Johnson, D.S.: The rectilinear Steiner tree problem is NP complete. SIAM Journal of Applied Mathematics 32, 826–834 (1977)

    Article  MathSciNet  Google Scholar 

  11. Garey, M.R.; Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, W. H (1979)

    MATH  Google Scholar 

  12. Hunt, H.B.; Marathe, M.V.; Radhakrishnan, V.; Stearns, R.E.: The Complexity of Planar Counting Problems. SIAM J. Comput 27(4), 1142–1167 (1998)

    Article  MathSciNet  Google Scholar 

  13. Jerrum, M.R.: Two-dimensional monomer-dimer systems are computationally intractable. J. Statist. Phys 48(1–2), 121–134 (1987)

    Article  MathSciNet  Google Scholar 

  14. R. M. Karp (1972). Reducibility among combinatorial problems. In Complexity of Computer Computations, R. E. Miller & J. W. Thatcher, editors, 85–104. Plenum Press.

  15. Ladner, R.E.: The circuit value problem is Log Space Complete for P. SIGACT NEWS 7(1), 18–20 (1975)

    Article  Google Scholar 

  16. Li, D.M.; Liu, Y.P.: A polynomial algorithm for finding the minimum feedback vertex set of a 3-regular simple graph. Acta Math. Sci 19(4), 375–381 (1999)

    Article  MathSciNet  Google Scholar 

  17. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput 11, 329–343 (1982)

    Article  MathSciNet  Google Scholar 

  18. Liśkiewicz, M.; Ogihara, M.; Toda, S.: The complexity of counting self-avoiding walks in subgraphs of two-dimensional grids and hypercubes. Theoretical Computer Science 304, 1 (2003)

    Article  MathSciNet  Google Scholar 

  19. Lupanov, O.B.: A method of circuit synthesis. Izv. VUZ Radiofiz 1, 120–140 (1958)

    Google Scholar 

  20. Neciporuk, E.I.: A Boolean Function. Sov. Math. Dokl 7, 999–1000 (1966)

    Google Scholar 

  21. E. Speckenmeyer (1983). Untersuchungen zum Feedback Vertex Set Problem in ungerichteten Graphen. Ph.D. thesis, Universität Paderborn.

  22. Speckenmeyer, E.: On feedback vertex sets and nonseparating independent sets in cubic graphs. Journal of Graph Theory 12(3), 405–412 (1988)

    Article  MathSciNet  Google Scholar 

  23. Ueno, S.; Kajitani, Y.; Gotoh, S.: On the nonseparating independent set problem and feedback set problem for graphs with no vertex degree exceeding three. Discrete Mathematics 72, 355–360 (1988)

    Article  MathSciNet  Google Scholar 

  24. Vadhan, S.: The Complexity of Counting in Sparse, Regular, and Planar Graphs. SIAM Journal on Computing 31(2), 398–427 (2001)

    Article  MathSciNet  Google Scholar 

  25. Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer Science 8, 189–201 (1979a)

    Article  MathSciNet  Google Scholar 

  26. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J. Computing 8(3), 410–421 (1979b)

    Article  MathSciNet  Google Scholar 

  27. Valiant, L.G.: Expressiveness of matchgates. Theoretical Computer Science 289(1), 457–471 (2002)

    Article  MathSciNet  Google Scholar 

  28. L. G. Valiant (2004). Holographic algorithms (extended abstract). In Proc. 45th Annual IEEE Symposium on Foundations of Computer Science, 17–19. Oct, Rome, Italy, IEEE Press, 306–315.

  29. L. G. Valiant (2005). Completeness for parity problems. In Proc. 11th International Computing and Combinatorics Conference, Aug, Kunming, China, LNCS, Vol. 3959, 1–9, 16–19.

  30. L. G. Valiant (2006). Accidental algorithms. In Proc. 47th Annual IEEE Symposium on Foundations of Computer Science, 22–24. Oct, Berkeley, CA, IEEE Press, 509–517.

  31. L. G. Valiant (2008). Holographic algorithms. SIAM J. on Computing 37(5), 1565–1594. (Earlier version: Electronic Colloquium on Computational Complexity, Report TR-05-099, 2005).

  32. M. Xia (2016). Base collapse of holographic algorithms. STOC 790–799.

  33. Xia, M.; Zhang, P.; Zhao, W.: Computational complexity of counting problems on 3-regular planar graphs. Theor. Comput. Sci 384(1), 111–125 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie G. Valiant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valiant, L.G. Some observations on holographic algorithms. comput. complex. 27, 351–374 (2018). https://doi.org/10.1007/s00037-017-0160-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00037-017-0160-4

Keywords

Subject classification

Navigation