Skip to main content
Log in

Quadratic Lower Bounds for Algebraic Branching Programs and Formulas

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

We show that any Algebraic Branching Program (ABP) computing the polynomial \(\sum _{i = 1}^n x_i^n\) has at least \(\Omega (n^2)\) vertices. This improves upon the lower bound of \(\Omega (n\log n)\), which follows from the classical result of Strassen (1973a) and Baur & Strassen (1983), and extends the results in Kumar (2019), which showed a quadratic lower bound for homogeneous ABPs computing the same polynomial.

Our proof relies on a notion of depth reduction, which is reminiscent of similar statements in the context of matrix rigidity, and shows that any small enough ABP computing the polynomial \(\sum _{i=1}^n x_i^n\) can be depth reduced to essentially a homogeneous ABP of the same size which computes the polynomial \(\sum _{i = 1}^n x_i^n + \varepsilon ({\bf x})\), for a structured “error polynomial” \(\varepsilon ({\bf x})\). To complete the proof, we then observe that the lower bound in Kumar (2019) is robust enough and continues to hold for all polynomials \(\sum _{i = 1}^n x_i^n + \varepsilon ({\bf x})\), where \(\varepsilon ({\bf x})\) has the appropriate structure.

We also use our ideas to show an \(\Omega (n^2)\) lower bound of the size of algebraic formulas computing the elementary symmetric polynomial of degree 0.1n on n variables. This is a slight improvement upon the prior best known formula lower bound (proved for a different polynomial) of \(\Omega (n^2/\log n)\)Kalorkoti (1985); Nechiporuk (1966); Shpilka & Yehudayoff (2010). Interestingly, this lower bound is asymptotically better than \(n^2/\log n\), the strongest lower bound that can be proved using previous methods. This lower bound also matches the upper bound, due to Ben-Or, who showed that elementary symmetric polynomials can be computed by algebraic formula (in fact depth-3 formula) of size \(O(n^2)\). Prior to this work, Ben-Or’s construction was known to be optimal only for algebraic formulas of depth-3 (Shpilka & Wigderson 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Walter Baur & Volker Strassen. (1983). The Complexity of Partial Derivatives. Theoretical Computer Science, 22, 317–330.

  • Michael Ben-Or (1983). Lower Bounds for Algebraic Computation Trees (Preliminary Report). In Proceedings of the 15th Annual ACM Symposium on Theory of Computing,25-27 April, 1983, Boston, Massachusetts, USA, David S. Johnson, Ronald Fagin, Michael L. Fredman, David Harel, Richard M. Karp, Nancy A. Lynch, Christos H. Papadimitriou, Ronald L. Rivest, Walter L. Ruzzo & Joel I. Seiferas, editors, 80–86. ACM. URL https://doi.org/10.1145/800061.808735.

  • Michael Ben-Or (1994). Algebraic Computation Trees in Characteristic p > 0 (Extended Abstract). In 35th Annual Symposium on Foundations of Computer Science, Santa Fe, New Mexico, USA, 20-22 November 1994, 534–539. IEEE Computer Society. URL https://doi.org/10.1109/SFCS.1994.365738.

  • Jin-yi Cai, Xi Chen & Dong Li (2010). Quadratic Lower Bound for Permanent Vs. Determinant in any Characteristic. Comput. Complex. 19(1), 37–56. URL https://doi.org/10.1007/s00037-009-0284-2.

  • Prerona Chatterjee, Mrinal Kumar, Adrian She & Ben Lee Volk (2020). A Quadratic Lower Bound for Algebraic Branching Programs. In 35th Computational Complexity Conference, CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), Shubhangi Saraf, editor, volume 169 of LIPIcs, 2:1–2:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL https://doi.org/10.4230/LIPIcs.CCC.2020.2.

  • David A. Cox, John B. Little & Donal O'Shea (2007). Ideals, Varieties and Algorithms. Undergraduate texts in mathematics. Springer.

  • Zeev Dvir, Guillaume Malod, Sylvain Perifel & Amir Yehudayoff (2012). Separating multilinear branching programs and formulas. In Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, Howard J. Karloff & Toniann Pitassi, editors, 615–624. ACM. URL https://doi.org/10.1145/2213977.2214034.

  • Paul Erdős, Ronald L. Graham & Endre Szemerédi (1975). On sparse graphs with dense long paths. Computers & Mathematics with Applications 1(3), 365 – 369. ISSN 0898-1221. URL http://www.sciencedirect.com/science/article/pii/0898122175900371.

  • Ankit Gupta, Pritish Kamath, Neeraj Kayal & Ramprasad Saptharishi (2016). Arithmetic Circuits: A Chasm at Depth 3. SIAM J. Comput. 45(3), 1064–1079. URL https://doi.org/10.1137/140957123.

  • Pavel Hrubes & Amir Yehudayoff (2016). On Isoperimetric Profiles and Computational Complexity. In 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani & Davide Sangiorgi, editors, volume 55 of LIPIcs, 89:1–89:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL https://doi.org/10.4230/LIPIcs.ICALP.2016.89.

  • Stasys Jukna (2012). Boolean function complexity: advances and frontiers, volume 27. Springer Science & Business Media.

  • Kalorkoti, Kyriakos. (1985). A Lower Bound for the Formula Size of Rational Functions. SIAM Journal on Computing, 14(3), 678–687.

    Article  MathSciNet  MATH  Google Scholar 

  • Mauricio Karchmer & Avi Wigderson (1993). On Span Programs. In Proceedings of the Eighth Annual Structure in Complexity Theory Conference, San Diego, CA, USA, May 18-21, 1993, 102–111. IEEE Computer Society. URL https://doi.org/10.1109/SCT.1993.336536.

  • Mrinal Kumar (2019). A quadratic lower bound for homogeneous algebraic branching programs. Computational Complexity 28(3), 409–435. URL https://doi.org/10.1007/s00037-019-00186-3.

  • Nutan Limaye, Kunal Mittal & Mukesh Pareek (2019). Homogeneous ABP complexity of elementary symmetric polynomial. Personal Communication. URL https://www.cse.iitb.ac.in/~nutan/papers/abp-complexity.pdf.

  • Meena Mahajan & V. Vinay (1997). Determinant: Combinatorics, Algorithms, and Complexity. Chicago J. Theor. Comput. Sci. 1997. URL http://cjtcs.cs.uchicago.edu/articles/1997/5/contents.html.

  • Izaak Meckler & Gjergji Zaimi (2017). Singular locus of zero locus of elementary symmetric polynomials. URL https://mathoverflow.net/questions/264226/singular-locus-of-zero-set-of-elementary-symmetric-polynomial.

  • Thierry Mignon & Nicolas Ressayre. (2004). A quadratic bound for the determinant and permanent problem. International Mathematics Research Notices, 2004(79), 4241–4253.

    Article  MathSciNet  MATH  Google Scholar 

  • Eduard Ivanovich Nechiporuk (1966). On a Boolean function. Dokl. Akad. Nauk SSSR 169, 765–766. URL http://mi.mathnet.ru/dan32449.

  • Noam Nisan (1991). Lower Bounds for Non-Commutative Computation (Extended Abstract). In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, Cris Koutsougeras & Jeffrey Scott Vitter, editors, 410–418. ACM. URL https://doi.org/10.1145/103418.103462.

  • Noam Nisan & Avi Wigderson (1997). Lower bounds on arithmetic circuits via partial derivatives. Computational Complexity 6(3), 217–234. Available on citeseer:10.1.1.90.2644.

  • Ran Raz (2006). Separation of Multilinear Circuit and Formula Size. Theory of Computing 2(6), 121–135. URL https://doi.org/10.4086/toc.2006.v002a006.

  • Ran Raz & Amir Yehudayoff. (2008). Balancing Syntactically Multilinear Arithmetic Circuits. Computational Complexity, 17(4), 515–535.

    Article  MathSciNet  MATH  Google Scholar 

  • Ramprasad Saptharishi (2015). A survey of lower bounds in arithmetic circuit complexity. URL https://github.com/dasarpmar/lowerbounds-survey/releases/. GitHub survey.

  • Amir Shpilka & Avi Wigderson (2001). Depth-3 arithmetic circuits over fields of characteristic zero. Comput. Complex. 10(1), 1–27. URL https://doi.org/10.1007/PL00001609.

  • Amir Shpilka & Amir Yehudayoff (2010). Arithmetic Circuits: A survey of recent results and open questions. Found. Trends Theor. Comput. Sci. 5(3-4), 207–388. URL https://doi.org/10.1561/0400000039.

  • Justin R. Smith (2014). Introduction to Algebraic Geometry. Textbooks in Mathematics. Taylor & Francis. ISBN 9781466572485. URL https://books.google.com/books?id=zx7usgEACAAJ.

  • Roman Smolensky (1997). Easy Lower Bound for a Strange Computational Model. Computational Complexity 6(3), 213–216. URL https://doi.org/10.1007/BF01294255.

  • Volker Strassen (1973a). Die Berechnungskomplexität Von Elementarsymmetrischen Funktionen Und Von Interpolationskoeffizienten. Numerische Mathematik 20(3), 238–251. ISSN 0029-599X. URL http://dx.doi.org/10.1007/BF01436566.

  • Volker Strassen (1973). Vermeidung von Divisionen. Journal für die reine und angewandte Mathematik 264, 184–202. URL http://eudml.org/doc/151394.

  • Leslie G. Valiant (1977). Graph-Theoretic Arguments in Low-Level Complexity. In Mathematical Foundations of Computer Science 1977, 6th Symposium, Tatranska Lomnica, Czechoslovakia, September 5-9, 1977, Proceedings, Jozef Gruska, editor, volume 53 of Lecture Notes in Computer Science, 162–176. Springer. URL https://doi.org/10.1007/3-540-08353-7_135.

  • Akihiro Yabe (2015). Bi-polynomial rank and determinantal complexity. CoRR. arXiv: 1504.00151.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prerona Chatterjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, P., Kumar, M., She, A. et al. Quadratic Lower Bounds for Algebraic Branching Programs and Formulas. comput. complex. 31, 8 (2022). https://doi.org/10.1007/s00037-022-00223-8

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00037-022-00223-8

Keywords

Subject classification

Navigation