Skip to main content
Log in

Implementing the expert object recognition pathway

  • Special issue on ICVS 2003
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract.

Brain imaging studies suggest that expert object recognition is a distinct visual skill, implemented by a dedicated anatomical pathway. Like all visual pathways, the expert recognition pathway begins with the early visual system (retina, LGN/SC, striate cortex). It is defined, however, by subsequent diffuse activation in the lateral occipital complex (LOC) and sharp foci of activation in the fusiform gyrus and right inferior frontal gyrus. This pathway recognizes familiar objects from familiar viewpoints under familiar illumination. Significantly, it identifies objects at both the categorical and instance (a.k.a. subcategorical) levels, and these processes cannot be disassociated. This paper presents a four-stage functional model of the expert object recognition pathway, where each stage models one area of anatomic activation. It implements this model in an end-to-end computer vision system and tests it on real images to provide feedback for the cognitive science and computer vision communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biederman I (1987) Recognition-by-components: a theory of human image understanding. Psychol Rev 94(2):115-147

    Article  Google Scholar 

  2. Bruce V, Young A (1998) In the eye of the beholder: the science of face perception. Oxford University Press, New York, p 280

    Google Scholar 

  3. Bülthoff HH, Edelman S (1992) Psychophysical support for a 2-D view interpolation theory of object recognition. Proc Natl Acad Sci USA 89:60-64

    Google Scholar 

  4. Bülthoff HH, Wallraven C, Graf A (2002) View-based dynamic object recognition based on human perception. In: Proceedings of the international conference on pattern recognition, Quebec City

  5. Chao LL, Martin A, Haxby JV (1999) Are face-responsive regions selective only for faces? NeuroReport 10(14): 2945-2950

    Google Scholar 

  6. Clark VP(1996) Functional magnetic resonance imaging of human visual cortex during face matching: a comparison with positron emission tomography. NeuroImage 4:1-15

    Google Scholar 

  7. Draper BA, Lionelle A (2003) Evaluation of selective attention under similarity transforms. In: Proceedings of the workshop on performance and attention in computer vision, Graz, Austria

  8. Frey BJ, Colmenarez A, Huang TS (1998) Mixtures of local linear subspaces for face recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE Press, Santa Barbara, CA

  9. Gauthier I, Logothetis NK (2000) Is face recognition not so unique after all? Cogn Neuropsychol 17(1/2/3):125-142

    Google Scholar 

  10. Gauthier I(1997) Behavioral and neural changes following expertise training. In: Proceedings of the annual meeting of the Psychonomic Society, Philadelphia

  11. Haxby JV(1999) The effect of face inversion on activity in human neural systems for face and object recognition. Neuron 22:189-199

    Article  Google Scholar 

  12. Ishai A(1999) Distributed representation of objects in the human ventral visual pathway. Science 96:9379-9384

    Google Scholar 

  13. Itti L, Koch C, Neibur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Patt Anal Mach Intell 20(11):1254-1259

    Article  Google Scholar 

  14. Kambhatla N, Leen TK (1997) Dimension reduction by local PCA. Neural Comput 9:1493-1516

    Google Scholar 

  15. Kanwisher N(1996) Functional imaging of human visual recognition. Cogn Brain Res 5:55-67

    Article  Google Scholar 

  16. Kosslyn SM (1994) Image and brain: the resolution of the imagery debate. MIT Press, Cambridge, MA, p 516

    Google Scholar 

  17. Kosslyn SM(1999) The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science 284:167-170

    Article  CAS  PubMed  Google Scholar 

  18. Kourtzi Z, Kanwisher N (2000) Cortical regions involved in perceiving object shape. J Neurosci 20(9):3310-3318

    Google Scholar 

  19. Lee TS(1998) The role of the primary visual cortex in higher level vision. Vision Res 38:2429-2454

    Article  Google Scholar 

  20. Lowe DG (1985) Perceptual organization and visual recognition. Kluwer, Boston

  21. Maguire E, Frith CD, Cipolotti L (2001) Distinct neural systems for the encoding and recognition of topography and faces. NeuroImage 13(4):743-750

    Article  Google Scholar 

  22. Maki A, Nordlund P, Eklundh J-O (2000) Attentional scene segmentation: integrating depth and motion from phase. Comput Vision Image Understand 78(3):351-373

    Article  Google Scholar 

  23. Marr D (1982) Vision. Freeman, Cambridge, MA

  24. Nakamura K(2000) Functional delineation of the human occipito-temporal areas related to face and scene processing: a PET study. Brain 123:1903-1912

    Article  Google Scholar 

  25. Oliva A, Schyns PG (1997) Coarse blobs or fine edges? Evidence that information diagnoticity changes the perception of complex visual stimuli. Cogn Psychol 34:72-107

    Article  Google Scholar 

  26. O’Toole AJ(1994) Structural aspects of face recognition and the other race effect. Mem Cogn 22:208-224

    Google Scholar 

  27. Palmer SE (1999) Vision science: photons to phenomenology. MIT Press, Cambridge, MA, p 810

    Google Scholar 

  28. Park S-J, Shin J-K, Lee M (2002) Biologically inspired saliency map model for bottom-up visual attention. In: Proceedings of the international workshop on biologically motivated computer vision. Springer, Berlin Heidelberg New York

  29. Parkhurst D, Law K, Neibur E (2002) Modeling the role of salience in the allocation of overt visual attention. Vision Res 42(1):107-123

    Article  Google Scholar 

  30. Pollen DA, Gaska JP, Jacobson LD (1989) Physiological constraints on models of visual cortical function. In: Rodney M, Cotterill J (eds) Models of brain functions. Cambridge University Press, New York, pp 115-135

  31. Puce A(1995) Face-sensitive regions in human extrastriate cortex studied by functional MRI. J Neurophysiol 74:1192-1199

    Google Scholar 

  32. Tanaka JW, Curran T (2001) A neural basis for expert object recognition. Psychol Sci 12(1):43-47

    Article  Google Scholar 

  33. Tarr MJ, Gauthier I (2000) FFA: a flexible fusiform area for subordinate-level visual processing automatized by expertise. Neuroscience 3(8):764-769

    Google Scholar 

  34. Tipping ME, Bishop CM (1999) Mixtures of probabilistic principal component analysers. Neural Comput 11(2):443-482

    Article  Google Scholar 

  35. Tong F(2000) Response properties of the human fusiform face area. Cogn Neuropsychol 17(1/2/3):257-279

    Google Scholar 

  36. Tsotsos JK(1995) Modeling visual attention via selective tuning. Artif Intell 78(1-2):507-545

    Google Scholar 

  37. Ungeleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, MA, pp 549-586

  38. Zipser K, Lamme VAF, Schiller PH (1996) Contextual modulation in primary visual cortex. Neuroscience 16(22):7376-7389

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Draper.

Additional information

Published online: 4 November 2004

Correspondence to: Bruce A. Draper

Kyungim Baek: Current address: Department of Biomedical Engineering, Columbia University, New York, NY, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Draper, B.A., Baek, K. & Boody, J. Implementing the expert object recognition pathway. Machine Vision and Applications 16, 27–32 (2004). https://doi.org/10.1007/s00138-004-0147-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-004-0147-4

Keywords:

Navigation