Skip to main content
Log in

Computer Vision for Nanoscale Imaging

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

The main goal of Nanotechnology is to analyze and understand the properties of matter at the atomic and molecular level. Computer vision is rapidly expanding into this new and exciting field of application, and considerable research efforts are currently being spent on developing new image-based characterization techniques to analyze nanoscale images. Nanoscale characterization requires algorithms to perform image analysis under extremely challenging conditions such as low signal-to-noise ratio and low resolution. To achieve this, nanotechnology researchers require imaging tools that are able to enhance images, detect objects and features, reconstruct 3D geometry, and tracking. This paper reviews current advances in computer vision and related areas applied to imaging nanoscale objects. We categorize the algorithms, describe their representative methods, and conclude with several promising directions of future investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguet, F., Van De Ville, D., Unser, M.: Sub-resolution axial localization of nanoparticles in fluorescence microscopy. In: Wilson, T., (ed.) Proceedings of the SPIE European conference on biomedical optics: confocal, multiphoton, and nonlinear microscopic imaging II (ECBO’05), vol. 5860, pp. 103–106. Munich, Germany, June 12–16 (2005)

  2. Aurenhammer F. (1991). Voronoi diagrams – a survey of a fundamental geometric data structure. ACM Comput Surv. 23(3):345–405

    Article  Google Scholar 

  3. Azuma R. (1997). A survey of augmented reality. Presence Teleoperators Virtual Environ. 6(4):355–385

    Google Scholar 

  4. Banks, J, Rothnagel, R., Hankamer, B.: Automated particle picking of biological molecules images by electron microscopy. In: Image and vision computing New Zealand, pp. 269–274, November (2003)

  5. Belge M., Kilmer M., Miller E. (2000). Wavelet domain image restoration with adaptive edge-preserving regularization. Integr. Psychiatry 9(4):597–608

    MATH  Google Scholar 

  6. Bera D., Kuiry S.C., McCutchen M., Kruize A., Heinrich H., Seal S., Meyyappan M. (2004). In-situ synthesis of palladium nanoparticles-filled carbon nanotubes using arc discharge in solution. Chem. Phys. Lett. 386(4–6):364–368

    Article  Google Scholar 

  7. Berglund A.J., Mabuchi H. (2005). Tracking-fcs: fluorescence correlation spectroscopy of individual particles. Opt. Express 13:8069–8082

    Article  Google Scholar 

  8. Black M.J., Sapiro G., Marimont D., Heeger D. (1998). Robust anisotropic diffusion. IEEE Trans Image Process. 7(3):421–432

    Article  Google Scholar 

  9. Bonneau S., Dahan M., Cohen L.D. (2005). Single quantum dot tracking based on perceptual grouping using minimal paths in a spatiotemporal volume. IEEE Trans. Image Progress. 14(9):1384–1395

    Article  Google Scholar 

  10. Bovik A.C., Gibson J.D., Bovik A. (eds) (2000). Handbook of Image and Video Processing. Academic, Orlando

    MATH  Google Scholar 

  11. Bracewell R. (1999). The Fourier Transform and Its Applications 3rd edn. McGraw-Hill, New York

    Google Scholar 

  12. Brandt S., Heikkonen J., Engelhardt P. (2001). Automatic alignment of transmission electron microscope tilt series without fiducial markers. J. Struct. Biol. 136:201–213

    Article  Google Scholar 

  13. Brandt S., Heikkonen J., Engelhardt P. (2001). Multiphase method for automatic alignment of transmission electron microscope images using markers. J. Struct. Biol. 133(1):10–22(13)

    Article  Google Scholar 

  14. Brown L.G. (1992) A survey of image registration techniques. ACM Comput. Surv. 24(4):325–376

    Article  Google Scholar 

  15. Chen Y.K., Chu A., Cook J., Green M.L.H., Harris P.J.F., Heesom R., Humphries M., Sloan J., Tsang S.C., Turner J.F.C. (1997). Synthesis of carbon nanotubes containing metal oxides and metals of the d-block and f-block transition metals and related studies. J. Mater. Chem. 7(3):545–549

    Article  Google Scholar 

  16. Chen, Y., Wang, H., Fang, T., Tyan, J.: Mutual information regularized bayesian framework for multiple image restoration. In: IEEE International conference on computer vision (ICCV) (2005)

  17. Comaniciu V., Meer P. (2003). Ker.nel-based object tracking. IEEE Trans. on Pattern Anal. Mach. Intell. 25(5):564–575

    Article  Google Scholar 

  18. Cornille, N., Garcia, D., Sutton, M., McNeil, S., Orteu, J.: Automated 3-D reconstruction using a scanning electron microscope. In: SEM annual conf. & exp. on experimental and applied mechanics (2003)

  19. Dempster A., Laird N.M., Rubin D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39(1):1–38

    MATH  MathSciNet  Google Scholar 

  20. Drummond T., Cipolla R. (2002). Real-time tracking of complex structures with on-line camera calibration. Image Vision Comput. 20(5–6):427–433

    Article  Google Scholar 

  21. Duda R.O., Hart P.E. (1972). Use of the hough transformation to detect lines and curves in pictures. Commun. of ACM. 15(1):11–15

    Article  Google Scholar 

  22. Falvo M.R., Clary G., Helser A., Paulson S., Taylor R.M. II, Chi F.P., Brooks V. Jr., Washburn S., Superfine R. (1998). Nanomanipulation experiments exploring frictional and mechanical properties of carbon nanotubes. Micros. Microanal. 4:504–512

    Google Scholar 

  23. Falvo M.R., Taylor R.M. II., Helser A., Chi V., Brooks F.P. Jr., Washburn S., Superfin R. (1999). Nanometre-scale rolling and sliding of carbon nanotubes. Nature 397:236–238

    Article  Google Scholar 

  24. Fang S., Dai Y., Myers F., Tuceryan M., Dunn K. (2000). Three-dimensional microscopy data exploration by interactive volume visualization. Scanning 22:218–226

    Article  Google Scholar 

  25. Farabee, M.: On-line biology book. (http://www.emc. maricopa.edu/faculty/farabee/BIOBK/BioBookTOC.html (2001)

  26. Faugeras, O.: Three-dimensional Computer Vision: a Geometric Viewpoint. MIT Press (1993)

  27. Fernandez J., Lawrence A., Roca J., Garcia I., Ellisman M., Carazo J. (2002). High-performance electron tomography of complex biological specimens. J. Struct. Biol. 138:6–20

    Article  Google Scholar 

  28. Fernandez J.-J., Carazo J.-M., Garcia I. (2004). Three-dimensional reconstruction of cellular structures by electron microscope tomography and parallel computing. J. Parallel Distrib. Comput. 64(2):285–300

    Article  MATH  MathSciNet  Google Scholar 

  29. Flegler S.L., Heckman J.W., Klomparens K.L. (1995). Scanning and Transmission Electron Microscopy: An Introduction. Oxford Press, Oxford

    Google Scholar 

  30. Gallop J. (2003). SQUIDs: some limits to measurement. Superconduct. Sci. Technol. 16:1575–1582

    Article  Google Scholar 

  31. Garini Y., Vermolen B.J., Young I.T. (2005). From micro to nano: recent advances in high-resolution microscopy. Curr. Opin. Biotechnol. 16(3):3–12

    Article  Google Scholar 

  32. Goldstein J.I., Newbury D.E., Echlin P., Joy D.C., Fiori C., Lifshin E. (1981). Scanning Electron Microscopy and X-Ray Microanalysis: A Text for Biologists, Materials Scientists, and Geologists. Plenum Publishing Corporation, New York

    Google Scholar 

  33. Grenander U., Srivastava A. (2001). Probability models for clutter in natural images. IEEE Trans. Pattern Anal Mach. Intell. 23(4):424–429

    Article  Google Scholar 

  34. Grimellec C.L., Lesniewska E., Giocondi M.-C., Finot E., Vie V., Goudonnet J.-P. (1998). Imaging of the surface of living cells by low-force contact-mode atomic force microscopy. Biophys. J. 75:695–703

    Google Scholar 

  35. Guthold M., Liu W., Stephens B., Lord S.T., Hantgan R.R., Erie D.A., Taylor R.M. II, Superfine R. (2004). Visualization and mechanical manipulations of individual fibrin fibers. Biophys. J. 87(6):4226–4236

    Article  Google Scholar 

  36. Haralick R.M., Shapiro L.G. (1992). Computer and Robot Vision. Addison-Wesley Longman Publishing, Boston

    Google Scholar 

  37. Harauz G., Fong-Lochovsky A. (1989). Automatic selection of macromolecules from electron micrographs by component labelling and symbolic processing. Ultramicroscopy 31(4):333–44

    Article  Google Scholar 

  38. Hartley R.I., Zisserman A. (2000). Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  39. Heiler M., Schnörr C. (2005). Natural image statistics for natural image segmentation. Int. J. Comput. Vision, 63(1):5–19

    Article  Google Scholar 

  40. Hell S.W. (2003). Towards fluorescence nanoscopy. Nat Biotechnol. 21(11):1347–1355

    Article  Google Scholar 

  41. Horn B. (1986). Robot Vision. MIT Press, Cambridge

    Google Scholar 

  42. Huang Z., Dikin D.A., Ding W., Qiao Y., Chen X., Fridman Y., Ruoff R.S. (2004). Three-dimensional representation of curved nanowires. J. Micros. 216(3):206–214

    Article  MathSciNet  Google Scholar 

  43. Ludtke S.J., Baldwin P., Chiu W. (1999). Eman: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128:82–97

    Article  Google Scholar 

  44. Jacob, M., Blu, T., Unser, M.: 3-D reconstruction of DNA filaments from stereo cryo-electron micrographs. In: Proceedings of the first 2002 IEEE international symposium on biomedical imaging: macro to nano (ISBI’02), vol. II, pp. 597–600. Washington, DC, USA, July 7–10 (2002)

  45. Jiang G., Quan L., Tsui H.-T. (2004). Circular motion geometry using minimal data. IEEE Trans. Pattern Anal. Mach. Intell. 26(6):721–731

    Article  Google Scholar 

  46. Kammerud C., Abidi B., Abidi M. (2005). Computer vision algorithms for 3D reconstruction of microscopic data– a review. Microsc Microanaly. 11:636–637

    Google Scholar 

  47. Kim, D.-H., Kim, T., Kim, B.: Motion planning of an afm-based nanomanipulator in a sensor-based nanorobotic manipulation system. In: Proceedings of 2002 international workshop on microfactory, pp. 137–140 (2002)

  48. Kubota T., Talekar P., Ma X., Sudarshan T.S. (2005). A non-destructive automated defect-detection system for silicon carbide wafers. Mach. Vis. Appl. 16(3):170–176

    Article  Google Scholar 

  49. Kumar, S., Hebert, M.: Discriminative fields for modeling spatial dependencies in natural images. In:Proceedings of advances in neural information processing systems (NIPS), December (2003)

  50. Kumar, S., Chaudhury, K., Sen, P., Guha, S.K.: Atomic force microscopy: a powerful tool for high-resolution imaging of spermatozoa. J. Nanobiotechnol. 3(9), (2005)

  51. Lacroute, P., Levoy, M.: Fast volume rendering using a shear-warp factorization of the viewing transformation. In: SIGGRAPH ’94: proceedings of the 21st annual conference on computer graphics and interactive techniques, pp. 451–458. ACM press, New York, (1994)

  52. Lambert J.H. (1760). Photometria sive de mensure de gratibus luminis, colorum umbrae. Eberhard Klett, Augsburg

    Google Scholar 

  53. Lee A.B., Pedersen K.S., Mumford D. (2003). The nonlinear statistics of high-contrast patches in natural images. Int. J. Comput. Vis. 54(1-3):83–103

    Article  MATH  Google Scholar 

  54. Levine Z.H., Kalukin A.R., Kuhn M., Retchi C.C., Frigo P., McNulty I., Wang Y., Lucatorto T.B., Ravel B.D., Tarrio C. (2000). Tomography of integrated circuit interconnect with an electromigration void. J. Appl.Phys. 87(9):4483–4488

    Article  Google Scholar 

  55. Li S.Z. (1995). Markov random field modeling in computer vision. Springer, London

    Google Scholar 

  56. Li G., Xi N., Yu M., Fung W.-K (2004). Development of augmented reality system for afm-based nanomanipulation. IEEE/ASME Trans. Mech. 9(2):358–365

    Article  Google Scholar 

  57. Lucic V., Forster F., Baumeister W. (2005). Structural studies by electron tomography: from cells to molecules.Annu. Rev. Biochem. 74:833–865

    Article  Google Scholar 

  58. Mallick S.P., Xu Y., Kriegman D.J. (2004). Detecting particles in cryo-em micrographs using learned features.J. Struct. Biol. 145(1-2):52–62

    Google Scholar 

  59. Mantooth B.A., Donhauser Z.J., Kelly K.F., Weiss P.S. (2002). Cross-correlation image tracking for drift correction and adsorbate analysis. Rev. Sci. Instrum. 73:313–317

    Article  Google Scholar 

  60. Marco S., Boudier T., Messaoudi C., Rigaud J.-L. (2004). Electron tomography of biological samples. Biochemistry (Moscow) 69(11):1219–1225

    Article  Google Scholar 

  61. McLachlan, G.J., Peel, D.: Robust cluster analysis via mixtures of multivariate t-distributions. InSSPR/SPR pp. 658–666 (1998)

  62. Nicholson W.V., Glaeser R.M. (2001). Review: automatic particle detection in electron microscopy. J. Struc. Biol. 133:90–101

    Article  Google Scholar 

  63. Nicholson W.V., Malladi R. (2004). Correlation-based methods of automatic particle detection in electron microscopy images with smoothing by anisotropic diffusion. J. Micros. 213:119–128

    Article  MathSciNet  Google Scholar 

  64. NSRG-Chappel Hill: Nanoscale-Science Research Group. http://www.cs.unc.edu/Research/nano/ (2005)

  65. Ogura T., Sato C. (2001). An automatic particle pickup method using a neural network applicable to low-contrast electron micrographs. J. Struct. Biol. 136(3):227–238

    Article  Google Scholar 

  66. Ong E.W., Razdan A., Garcia A.A., Pizziconi V.B., Ramakrishna B.L., Glaunsinger W.S. (2000). Interactive nano-visualization of materials over the internet. J. Chem. Educa. 77(9):1114–1115

    Article  Google Scholar 

  67. Perona P., Malik J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7):629–639

    Article  Google Scholar 

  68. Pohl, D.W.: Scanning near-field optical microscopy. Advances in Optical and Electron Microscopy. In.: Sheppard, C.J.R., Mulvey, T., (eds.) Vol. 12. Academic , London (1990)

  69. Ronneberger O., Schultz E., Burkhardt H. (2002). Automated pollen recognition using 3D volume images from fluorescence microscopy. Aerobiologia 18(2):107–115

    Article  Google Scholar 

  70. Rosenfeld, A., Pfaltz, J.: Distance functions on digital pictures. Pattern Recogn 1(1), 33–61 July (1968).

    Google Scholar 

  71. Rugar, D., Budakian, R., Mamin, H.J., Chui, B.W.: Single spin detection by magnetic resonance force microscopy. Nature, 430, 329–332, July (2004)

    Google Scholar 

  72. Russ J.C. (1998). The Image Processing Handbook. IEEE Press, New York

    Google Scholar 

  73. Ryu, J., Horn, B.K.P., Mermelstein, M.S., Hong, S., Freedam, D.M.: Application of structured illumination in nanoscale vision. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshop: Computer Vision for the Nano Scale, pp. 17–24, June (2003)

  74. Sandberg K., Mastronarde D.N., Beylkina G. (2003). A fast reconstruction algorithm for electron microscope tomography. J. Struct. Biol. 144:61–72

    Article  Google Scholar 

  75. Scharr, H., Black, M., Haussecker, H.: Image statistics and anisotropic diffusion.In: ICCV03, pp. 840–847 (2003)

  76. Scharr, H., Felsberg, M., Forssén, P.-E.: Noise adaptive channel smoothing of low-dose images. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition workshop: computer vision for the nano scale, June (2003)

  77. Scharr, H., Uttenweiler, D.: 3D anisotropic diffusion filtering for enhancing noisy actin filament fluorescence images. In: Proceedings of the 23rd DAGM-symposium on pattern recognition, pp. 69–75. Springer, London, (2001)

  78. Sharma, G., Mavroidis, C., Ferreira, A.: Virtual reality and haptics in nano and bionanotechnology, vol. X of Handbook of Theoretical and Computational Nanotechnology, chap. 40. American Scientific Publishers, Stevenson Ranch (2005)

  79. Singh V., Marinescu D.C., Baker T.S. (2004). Image segmentation for automatic particle identification in electron micrographs based on hidden markov random field models and expectation maximization. J. Struct. Biol. 145(1-2):123–141

    Article  Google Scholar 

  80. Stoscherk A., Hegerl R. (1997). Automated detection of macromolecules from electron micrographs using advanced filter techniques. J. Micros. 185:76–84

    Article  Google Scholar 

  81. Subramaniam S., d Milne J.L. (2004). Three-dimensional electron microscopy at molecular resolution. Annu. Revi. Biophys. Biomol. Struct. 33:141–155

    Article  Google Scholar 

  82. Tan, H.Z., Walker, L., Reifenberger, R., Mahadoo, S., Chiu, G., Raman, A., Helser, A., Colilla, P.: A haptic interface forhuman-in-the-loop manipulation at the nanoscale.In: Proceedings of the 2005 world haptics conference (WHC05): the first joint euro haptics conference and the symposium on haptic interfaces for virtual environment and teleoperator systems, pp. 271–276 (2005)

  83. Tsai R.Y. (1987). A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE J. Robot. Autom. RA-3(4):323–344

    Article  Google Scholar 

  84. Valinetti, A., Fusiello, A., Murino, V.: Model tracking for video-based virtual reality. In: ICIAP, pp. 372–377 (2001)

  85. van Heel M., Gowen B., Matadeen R., Orlova E.V., Finn R., Pape T., Cohen D., Stark H., Schmidt R., Schatz M., Patwardhan A. (2000). Single-particle electron cryo-microscopy: towards atomic resolution. Q.Revi. Biophysi. 33(4):307–369

    Article  Google Scholar 

  86. Viola P., Jones M.J. (2004). Robust real-time face detection. Int. J. Comput. Vis. 57(2):137–154

    Article  Google Scholar 

  87. Watt I.M. (1997). The Principles and Practice of Electron Microscopy. Cambridge Press, Cambridge

    Google Scholar 

  88. Weickert J. (1997). Anisotropic Diffusion in Image Processing. Teubner Verlag, Stuttgart

    Google Scholar 

  89. Xiao J., Shah M. (2004). Tri-view morphing. Comput. Vis, Image Understand. 96(3):345–366

    Article  Google Scholar 

  90. Yilmaz A., Shafique K., Shah M. (2003). Target tracking in airborne forward looking infrared imagery. Image Vis. Comput. 21(7):623–635

    Article  Google Scholar 

  91. Yu, Z., Bajaj, C.: A gravitation-based clustering method and its applications in 3D electron microscopy imaging. In:5th International conference on advances in pattern recognition(ICAPR’03), pp. 137–140 (2003)

  92. Yu Z., Bajaj C. (2004). Detecting circular and rectangular particles based on geometric feature detection in electron micrographs. J. Struct. Biol. 145, 168D180

  93. Zhang Z. (2000). A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11):1330–1334

    Article  Google Scholar 

  94. Zhu Y., Carragher B., Kriegman D., Milligan R.A., Potter C.S. (2001). Automated identification of filaments in cryoelectron microscopy images. J. Struct. Biol. 135:302–321

    Article  Google Scholar 

  95. Zhu Y., Carragher B., Mouche F., Potter C.S. (2003). Automatic particle detection through efficient Hough transforms. IEEE Trans Med Imag. 22(9):1053–1062

    Article  Google Scholar 

  96. Zhu Y., Carragher B., Glaeser R.M., Fellmann D., Bajaj C., Bern M., Mouche F., de Haas F., Hall R.J., Kriegman D.J., Ludtke S.C., Mallick S.P., Penczek P.A., Roseman A.M., Sigworth F.J., Volkmann N., Potter C.S. (2004). Automatic particle selection: Results of a comparative study. J. Struct. Biolo. 145:3–14

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eraldo Ribeiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro, E., Shah, M. Computer Vision for Nanoscale Imaging. Machine Vision and Applications 17, 147–162 (2006). https://doi.org/10.1007/s00138-006-0021-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-006-0021-7

Keywords

Navigation