Skip to main content
Log in

Hybrid Stereo Configurations Through a Cylindrical Sensor Calibration

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

This paper deals with the calibration of a cylindric omnidirectional imaging system, based on a rotating 2,048 pixels linear camera which provides high definition panoramas. The two-step algorithm relies on line-segment projections as calibration features, which are sinusoidal curves. We proposed a cylindrical line detection, based on the dual principle of the Hough transform. Moreover, the use of Plucker coordinates introduces some new characteristics in the calibration process. This kind of formalism allow a linearization of the cylindrical projection, which is non-linear in the usual way. Results obtained from this first step are used to evaluate one of the intrinsics, the other one being determined by a linear criterion minimization in the dual space, i.e. the sines magnitudes space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker S., Nayar S. (1999) A theory of single-viewpoint catadioptric image formation. Int. J. Comput. Visi. 32, 175–196

    Article  Google Scholar 

  2. Benosman, R. Reconstruction d’environnements pertus par un capteur panoramique de stéréovision et détermination des modèles CAO. PhD thesis, Université Pierre et Marie Curie (1997)

  3. Benosman R., Kang S.B. (2001) Panoramic Vision: Theory, Sensors and Applications. Springer, Berlin Heidelberg New York

    Google Scholar 

  4. Benosman R., Manière T., Devars J. (1996) Multi-directionnal stereovision sensor, calibration and scenes reconstruction. 13th Int. Conf. Pattern Recognit. A, 161–165

  5. Benosman R., Manière T., Devars J. (1997) Panoramic sensor calibration using computational projective geometry. IEEE Int. Conf. Rob. Autom. 2, 1353–1358

    Google Scholar 

  6. Bunschoten, R., Krse, R. Range estimation from a pair of omnidirectional images. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1174–1179 (2001)

  7. Cao Z.L., Oh E.L., Hall S.J. (1986) Dynamic omnidirectional vision for mobile robots. J. Rob. Syst. 3(1):5–17

    Article  Google Scholar 

  8. Cauchois, C., Brassart, E., Delahoche, L., Clerentin, A. 3d localization with conical vision. In: Proceedings of IEEE Workshop on Omnidirectional Vision OMNIVIS’03, June 2003

  9. Chang, P., Hebert, M. Omni-directionnal structure from motion. IEEE Workshop on Omnidirectional Vision (OMNIVIS), September 2000

  10. Duda R.O., Hart P.E. (1972) Use of the hogh transform to detect lines and curves in picures. Communi. ACM 15, 11–15

    Article  Google Scholar 

  11. Faugeras O. (1993) Three-Dimensional Computer Vision. MIT Press, Cambridge

    Google Scholar 

  12. Faugeras O., Maybank S. (1990) Motion from point matches: multiplicity of solutions. Int. J. Comput. Vis. 4, 225–246

    Article  Google Scholar 

  13. Gaspar, J., Decco, C., Okamoto, J. Jr, Santos-Victor, J. Constant resolution omnidirectional cameras. In: Proceedings of IEEE Workshop on Omnidirectional Vision Omnivis’ 02, pp. 27–34, June (2002)

  14. Geyer, C., Daniilidis, K. Catadioptric camera calibration. In: Proceedings of ICCV, pp. 398–404, September 1999

  15. Geyer, C., Daniilidis, K. A unifying theory for central panoramic systems and practical applications. In: Proceedings of ECCV, pp. 445–461, 2000

  16. Geyer C., Daniilidis K. (2002) Para-catadioptric calibration. IEEE Trans. Pattern Anal. Mach. Intell. 24, 687–695

    Article  Google Scholar 

  17. Hartley, R. In defence of 8-point algorithm. In: Proceedings 5th International Conference on Computer Vision, pp 1064–1070, 1995

  18. Hartley R.I., Zissermann A. (2000) Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  19. Hicks, R.A., Perline, R.K. Equi-areal catadioptric sensors. In: Proceedings of IEEE Workshop on Omnidirectional Vision Omnivis’ 02, pp. 13–18, June 2002

  20. Horn B.K.P., Weldon E.J. Jr. (1988) Direct methods for recovering motion. Proc. IJCV 2(1): 51–76

    Article  Google Scholar 

  21. Hough, P. V. C. Machine analysis of bubble chamber pictures. International Conference on High Energy Accelerators and Instrumentation (1959)

  22. Huang, F. Epipolar geometry and camera calibration of cylindrical panoramas. PhD thesis, Auckland University (2000)

  23. Huang, R., Wei, S. K., Klette, R. Comparative studies of line-based panoramic camera calibration. IEEE Workshop on Omnidirectional Vision Omnivis’03, June 2003

  24. Ishiguro I., Yamamoto M., Tsuji S. (1992) Omnidirectcional stereo. IEEE Trans. PAMI. 14, 257–262

    Google Scholar 

  25. Longuet-Higgins H. (1981) A computer algorithm for reconstructing a scene from two projections. Nature 293, 133–135

    Article  Google Scholar 

  26. Luong, Q.T., Vieville, T. Canonic representations for the geometry of multiple projective views. Proceeding of ECCV, July 1994

  27. Nayar, S. K. Catadioptric omnidirectional camera. Proceedings of IEEE CVPR, pp. 482–488, June 1997

  28. Olson, C. F. Constrained Hough transforms for curve Comput. Vis. Image Understand. pp. 329–345 (1999)

  29. Peleg S., Ben Ezra M. (1999) Stereo panoramic with a sngle camera. Proc. IEEE CVPR 1, 395–401

    Google Scholar 

  30. Proceedings of the IEEE Workshop on Omnidirectional Vision (OMINIVIS 2000–2005.)

  31. Shoemake, K. Plucker coordinate tutorial. Ray-Tracing News vol 11, July 1998

  32. Shum, H. Y., Kalai, A., Seitz, S. Omnivergent stereo. In: Proceedings of the Seventh International Conference on Computer Vision (ICCV 99), 1999

  33. Shum H.Y., Szeliski R. (1999) Stereo reconstruction from multiperspective cameras. Proc. IEEE ICCV 1, 14–21

    Google Scholar 

  34. Smadja, L., Bigorgne, E., Benosman, R., Devars, J. Génération de cartes de disparité denses a partir d’images panoramiques cylindriques haute définition. Proc. GRETSI, September 2003

  35. Sturm, P. Mixing catadioptric and perspective cameras. In: Proceedings of the IEEE Workshop on Omnidirectional Vision (OMINIVIS’02), 2002

  36. Swaminathan, R., Nayar, S., Grossberg, M. Designing mirrors for catadioptric systems that minimize image errors. IEEE Workshop on Omnidirectional Vision Omnivis04, June 2004

  37. Tarel, J. P., Gagalowicz, A. Calibration a base d’ellipses. Technical report, INRIA Rocquencourt, 2001

  38. Tsai R.Y., Huang T.S. (1994) Uniqueness and estimation of three dimensional motion parameters of rigid objects with curved surfaces. IEEE Trans. PAMI 6, 13–27

    Google Scholar 

  39. Won K.Y., Mendota P.R.S., Cipolla R. (2003) Camera calibration from surfaces of revolution. Trans. PAMI 25(2): 147–161

    Google Scholar 

  40. Yagi, Y., Kawato, S. Panorama scene analysis with conic projection. Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems90, p 181187, July 1990

  41. Zhang Z. (1998) Determining the epipolar geometry and its uncertainty: A review. Int. J. Comput. Vis. 27(2): 161–198

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Smadja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smadja, L., Benosman, R. & Devars, J. Hybrid Stereo Configurations Through a Cylindrical Sensor Calibration. Machine Vision and Applications 17, 251–264 (2006). https://doi.org/10.1007/s00138-006-0032-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-006-0032-4

Keywords

Navigation