Skip to main content
Log in

Automatic detection of dust devils and clouds on Mars

  • Special Issue Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

The acquisition of science data in space applications is shifting from teleoperated data collection to an automated onboard analysis, resulting in improved data quality, as well as improved usage of limited resources such as onboard memory, CPU, and communications bandwidth. Science instruments onboard a modern deep-space spacecraft can acquire much more data that can be downloaded to Earth, given the limited communication bandwidth. Onboard data analysis offers a means of compressing the huge amounts of data collected and downloading only the most valuable subset of the collected data. In this paper, we describe algorithms for detecting dust devils and clouds onboard Mars rovers, and summarize the results. These algorithms achieve the accuracy required by planetary scientists, as well as the runtime, CPU, memory, and bandwidth constraints set by the engineering mission parameters. The detectors have been uploaded to the Mars Exploration Rovers, and currently are operational. These detectors are the first onboard science analysis processes on Mars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balme, M.R., Whelley, P., Greeley, R.: Mars: dust devil track survey in Argyre Planitia and Hellas Basin. J. Geophys. Res. 108 (2003). 10.1029/2003JE002096

  2. Castano, R., Anderson, R.C., Judd, M., Estlin, T., Gaines, D., Castano, A., Bornstein, B., Wagstaff, K., Stough, T.: Recent advances: onboard autonomous science investigation system. In: EOS Trans. AGU, vol. 85(17), Fall Meet. Suppl., Abstract P43A-0913 (2004)

  3. Castano, R., Estlin, T., Gaines, D., Castano, A., Bornstein, B., Stough, T., Chouinard, C., Judd, M.: Opportunistic rover science: finding and reacting to rocks, clouds and dust devils. In: Proc. IEEE Aerospace Conference. Big Sky, Montana (2006)

  4. Cheng Y., Goguen J., Johnson A., Leger C., Matthies L., SanMartini M. and Willson R. (2004). The Mars Exploration Rover descent image motion estimation system. IEEE Intell. Syst. 19(3): 13–21

    Article  Google Scholar 

  5. Cheng, Y., Johnson, A., Matthies, L.: MER-DIMES: a planetary landing application of computer vision. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, San Diego, CA, vol. 1, pp. 806–813 (2005)

  6. Cheng, Y., Maimone, M., Matthies, L.: Visual odometry on the Mars exploration rovers. In: Proc. IEEE Int’l Conf. Systems, Man and Cybernetics, Big Island, HW, vol. 1, pp. 903–910 (2005)

  7. Cheung, S.C., Kamath, C.: Robust techniques for background substraction in urban traffic video. In: SPIE Electronic Imaging, San Jose, CA, vol. 5308, pp. 881–892 (2004)

  8. Cozman, F., Krotkov, E.: Automatic mountain detection and pose estimation for teleoperation of lunar rovers. In: Proc. IEEE Int’l Conf. Robotics and Automation, Albuquerque, NM, pp. 2452–2457 (1997)

  9. Cozman F., Krotkov E. and Guestrin C.E. (2000). Outdoor visual position estimation for planetary rovers. Autonomous Robots 9(2): 135–150

    Article  Google Scholar 

  10. Cucchiara R., Grana C., Piccardi M. and Prati A. (2003). Detecting moving objects, ghosts and shadows in video streams. IEEE Trans. Pattern Anal. Mach. Intell. 26(10): 1337–1342

    Article  Google Scholar 

  11. Ettinger S.M., Nechyba M.C., Ifju P.G. and Waszak M. (2003). Vision-guided flight stability and control for micro air vehicles. Adv. Robotics 17(7): 617–640

    Article  Google Scholar 

  12. Ferri, F., Smith, P.H., Lemmon, M., Renno, N.O.: Dust devils as observed by mars pathfinder. J. Geophys. Res. 108(E12) (2003)

  13. Gilmore M., Castano R., Mann T., Anderson R.C., Mjolsness E., Manduchi R. and Saunders R.S. (2000). Strategies for autonomous rovers at mars. J. Geophys. Res. 105(E12): 29,223–29,237

    Article  Google Scholar 

  14. Greeley, R., Kuzmin, R.O., Rafkin, S.C.R., Michaels, T., Haberle, R.M.: Wind-related features in Gusev crater, Mars. J. Geophys. Res. 108 (2003). doi:10.1029/2002JE002006

  15. Greeley, R., Whelley, P., Arvidson, R., Cabrol, N., Foley, D., Franklin, B., Geissler, P., Golombek, M., Kuzmin, R., Landis, G., Lemmon, M., Neakrase, L., Squyres, S., Thompson, S.: Active dust devils in Gusev crater, Mars: Observations from the Mars Exploration Rover, Spirit. J. Geophys. Res. (in press)

  16. Greeley, R., Whelley, P., Neakrase, L.: Martian dust devils: Directions of movement inferred from they tracks. Geophys. Res. Letters 31 (2004)

  17. Gulick V., Morris R., Ruzon M. and Roush T. (2000). Autonomous image analysis during the 1999 Marsokhod rover field test. J. Geophys. Res. Planets 106(E4): 7745–7764

    Article  Google Scholar 

  18. Immerkær J. (1996). Fast noise variance estimation. Comput. Vision Image Understanding 64(2): 300–302

    Article  Google Scholar 

  19. Kiely A. and Klimesh M. (2003). The ICER progressive wavelet image compressor. IPN Prog. Rep. 42(155): 1–46

    Google Scholar 

  20. Lemmon M., Wolff M., Smith M., Clancy R., Banfield D., Landis G., Ghosh A., Smith P., Spanovich N., Whitney B., Greeley R., Thompson S., Bell J. and Squyres S. (2004). Atmospheric imaging results from the Mars Exploration Rovers: spirit and opportunity. Science 306(5702): 1753–1756

    Article  Google Scholar 

  21. Lo, B., Velastin, S.A.: Automatic congestion detection system for underground platforms. In: Proc. Int’l Symp. Intell. Multimedia, Video and Speech Processing, Hong Kong pp. 158–161 (2001)

  22. Maki, J., III, J.B., Herkenhoff, K., Sqyres, S., Kiely, A., Klimseh, M., Schwochert, W., Litwin, T., Willson, R., Johnson, A., Maimone, M., Baumgartner, E., Collins, A., Wadsworth, M., Elliot, S., Dingizian, A., Brown, D., Hagerott, E., Scherr, L., Deen, R., Alexander, D., Lorre, J.: Mars exploration rover engineering cameras. J. Geophys. Res. 108(E12) (2003)

  23. Metzger S.M., Carr J.R., Johnson J.R., Parker T.J. and Lemmon M.T. (1999). Dust devil vortices seen by the mars pathfinder camera. Geophys. Res. Lett. 26(18): 2781–2784

    Article  Google Scholar 

  24. Roush, T., Shipman, M., Morris, R., Gazis, P., Pedersen, L.: Essential autonomous science inference on rovers (EASIR). In: IEEE Aerospace Conference, Big Sky, MT, vol. 2, pp. 790–800 (2004)

  25. Stein F. and Medioni G. (1995). Map-based localization using the panoramic horizon. IEEE Trans. Robotics Automat. 11(6): 892–896

    Article  Google Scholar 

  26. Talluri R. and Aggarwal J.K. (1993). Image/map correspondence for mobile robot self-location using computer graphics. IEEE Trans. Pattern Anal. Mach. Intell. 15(6): 597–601

    Article  Google Scholar 

  27. Thompson, D., Niekum, S., Smith, T., Wettergreen, D.: Automatic detection and classification of geological features of interest. In: Proc. IEEE Aerospace Conference, Big Sky, Montana (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres Castano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castano, A., Fukunaga, A., Biesiadecki, J. et al. Automatic detection of dust devils and clouds on Mars. Machine Vision and Applications 19, 467–482 (2008). https://doi.org/10.1007/s00138-007-0081-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-007-0081-3

Keywords

Navigation