Skip to main content
Log in

Measuring and modelling sewer pipes from video

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

This article presents a system for the automatic measurement and modelling of sewer pipes. The system recovers the interior shape of a sewer pipe from a video sequence which is acquired by a fish-eye lens camera moving inside the pipe. The approach is based on tracking interest points across successive video frames and posing the general structure-from-motion problem. It is shown that the tracked points can be reliably reconstructed despite the forward motion of the camera. This is achieved by utilizing a fish-eye lens with a wide field of view. The standard techniques for robust estimation of the two- and three-view geometry are modified so that they can be used for calibrated fish-eye lens cameras with a field of view less than 180°. The tubular arrangement of the reconstructed points allows pipe shape estimation by surface fitting. Hence, a method for modelling such surfaces with a locally cylindrical model is proposed. The system is demonstrated with a real sewer video and an error analysis for the recovered structure is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn S.J., Rauh W., Cho H.S. and Warnecke H.J. (2002). Orthogonal distance fitting of implicit curves and surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 24(5): 620–638

    Article  Google Scholar 

  2. Brandt, S.S.: On the probabilistic epipolar geometry. In: Proc. BMVC, pp. 107–116 (2004)

  3. Burschka, D., Li, M., Taylor, R., Hager, G.D.: Scale-invariant registration of monocular endoscopic images to ct-scans for sinus surgery. In: Proc. MICCAI, pp. 413–421 (2004)

  4. Chae M.J. and Abraham D.M. (2001). Neuro-fuzzy approaches for sanitary sewer pipeline condition assessment. J. Comput. Civil Eng. 15(1): 4–14

    Article  Google Scholar 

  5. Cooper D., Pridmore T.P. and Taylor N. (1998). Towards the recovery of extrinsic camera parameters from video records of sewer surveys. Mach. Vis. Appl. 11: 53–63

    Article  Google Scholar 

  6. Csurka G., Zeller C., Zhang Z. and Faugeras O. (1997). Characterizing the uncertainty of the fundamental matrix. Comput. Vis. Image Underst. 68(1): 18–36

    Article  Google Scholar 

  7. Faber, P., Fisher, B.: A buyer’s guide to euclidean elliptical cylindrical and conical surface fitting. In: Proc. BMVC, pp. 521–530 (2001)

  8. Fitzgibbon A., Pilu M. and Fisher R.B. (1999). Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21(5): 476–480

    Article  Google Scholar 

  9. Fitzgibbon, A.W., Zisserman, A.: Automatic 3D model acquisition and generation of new images from video sequences. In: Proc. European Signal Processing Conference, pp. 1261–1269 (1998)

  10. Fitzgibbon, A.W., Zisserman, A.: Automatic camera recovery for closed or open image sequences. In: Proc. ECCV, pp. 311–326 (1998)

  11. Forsyth, D., Ponce, J.: Computer Vision, a Modern Approach. Prentice Hall (2003)

  12. Geyer, C., Daniilidis, K.: Structure and motion from uncalibrated catadioptric views. In: Proc. CVPR, pp. 279–286 (2001)

  13. Gooch, R.M., Clarke, T.A., Ellis, T.J.: A semi-autonomous sewer surveillance and inspection vehicle. In: Proc. IEEE Intelligent Vehicles, pp. 64–69 (1996)

  14. Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference (1988)

  15. Hartley, R., Zisserman, A.: Multiple View Geometry, 2 edn., Cambridge (2003)

  16. Kannala, J.: Measuring the shape of sewer pipes from video. Master’s thesis, TKK (2004)

  17. Kannala, J., Brandt, S.S.: Measuring the shape of sewer pipes from video. In: Proc. MVA (2005)

  18. Kannala J. and Brandt S.S. (2006). A generic camera model and calibration method for conventional, wide-angle and fish-eye lenses. IEEE Trans. Pattern Anal. Mach. Intell. 28(8): 1335–1340

    Article  Google Scholar 

  19. Kraus K. (1997). Photogrammetry, vol. 2: Advanced methods and applications. Ferd. Dummler’s, Verlag Bonn

    Google Scholar 

  20. Kuntze, H.B., Haffner, H.: Experiences with the development of a robot for smart multisensoric pipe inspection. In: Proc. IEEE Robotics and Automation, pp. 1773–1778 (1998)

  21. Lhuillier, M.: Automatic structure and motion using a catadioptric camera. In: Proc. OMNIVIS (2005)

  22. Lhuillier, M., Perriollat, M.: Uncertainty ellipsoids calculations for complex 3D reconstructions. In: Proc. IEEE Robotics and Automation, pp. 3062–3069 (2006)

  23. Lhuillier M. and Quan L. (2005). A quasi-dense approach to surface reconstruction from uncalibrated images. IEEE Trans. Pattern Anal. Mach. Intell. 27(3): 418–433

    Article  Google Scholar 

  24. Lukács, G., Martin, R., Marshall, D.: Faithful least-squares fitting of spheres, cylinders, cones and tori for reliable segmentation. In: Proc. ECCV, pp. 671–686 (1998)

  25. Mičušík B. and Pajdla T. (2006). Structure from motion with wide circular field of view cameras. IEEE Trans. Pattern Anal. Mach. Intell. 28(7): 1135–1149

    Article  Google Scholar 

  26. Nister D. (2004). An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6): 756–770

    Article  Google Scholar 

  27. Schmidt, J., Vogt, F., Niemann, H.: Nonlinear refinement of camera parameters using an endoscopic surgery robot. In: Proc. MVA, pp. 40–43 (2002)

  28. Sinha S.K. and Fieguth P.W. (2006). Morphological segmentation and classification of underground pipe images. Mach. Vis. Appl. 17: 21–31

    Article  Google Scholar 

  29. Triggs B., McLauchlan P.F., Hartley R. and Fitzgibbon A. (2000). Bundle adjustment—a modern synthesis. Lecture Notes Comput. Sci. 1883: 298–372

    Article  Google Scholar 

  30. Umeyama S. (1991). Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(4): 376–380

    Article  Google Scholar 

  31. Werghi, N., Fisher, R., Robertson, C., Ashbrook, A.: Modelling objects having quadric surfaces incorporating geometric constraints. In: Proc. ECCV, pp. 185–201 (1998)

  32. Xu, G., Zhang, Z.: Epipolar Geometry in Stereo, Motion and Object Recognition. Kluwer (1996)

  33. Xu K., Luxmoore A.R. and Davies T. (1998). Sewer pipe deformation assessment by image analysis of video surveys. Pattern 31(2): 169–180

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juho Kannala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kannala, J., Brandt, S.S. & Heikkilä, J. Measuring and modelling sewer pipes from video. Machine Vision and Applications 19, 73–83 (2008). https://doi.org/10.1007/s00138-007-0083-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-007-0083-1

Keywords

Navigation