Abstract
The automation of the analysis of large volumes of seismic data is a data mining problem, where a large database of 3D images is searched by content, for the identification of the regions that are of most interest to the oil industry. In this paper we perform this search using the 3D orientation histogram as a texture analysis tool to represent and identify regions within the data, which are compatible with a query texture.
Similar content being viewed by others
References
Bahorich M. and Farmer S. (1995). 3D seismic discontinuity for faults and stratigraphic features: the coherence cube. Leading Edge 14(10): 1053–1058
Bakker, P.: Image structure analysis for seismic interpretation. PhD thesis, Delft University of Technology (2002)
Bakker P., van Vliet L.J. and Verbeek P.W. (2001). Confidence and curvature estimation of curvilinear structures in 3D. Int. Conf. Comput. Vis. 2: 139–144
Blinov A. and Petrou M. (2005). Reconstruction of 3D Horizons from 3D seismic datasets. IEEE Trans. Geosci. Remote Sensing 43: 1421–1431
Brown, M., Clapp, R.: Seismic pattern recognition via predictive signal/noise separation. Technical Report 102, Stanford Exploration Project (1999)
Cowley R. and O’Brien G. (2000). Identification and interpretation of leaking hydrocarbons using seismic data: a comparative montage of examples from the major fields in Australia’s North West Shelf and Gippsland Basin. APPEA J. 40(1): 121–150
Davis L. (1981). Polarograms: a new tool for image texture analysis. Pattern Recogn. 13: 219–223
Deighton, M.: 3D texture analysis in seismic data. PhD thesis, University of Surrey (2004)
Faraklioti M. and Petrou M. (2004). Horizon picking in 3D seismic data volumes. Mach. Vis. Appls. 15(4): 216–219
Faraklioti, M., Petrou, M.: The use of structure tensor in the analysis of seismic data. In: Iske A., Randen T. (eds.) Mathematical Methods and Modelling in Hydrocarbon Exploration and Production. Mathematics in Industry, vol. 7. Springer, pp. 47–88. ISBN 3-540-22536-6 (2004)
Fukunaga K. (1990). Introduction to Statistical Pattern Recognition. Academic, San Diego
Gao, D.: 3D vcm seismic textures: a new technology to quantify seismic interpretation. In: Ann. Intl. Mtg. Soc. Expl Geophys., Exp Abstr, pp. 1037–1039 (1999)
Gao D. (2003). Volume texture extraction for 3D seismic visualisation and interpretation. Geophysics 68(4): 1294–1302
De Groot, P.: Seismic reservoir characterisation using artificial neural networks. In: 19th Mintrop Seminar, 16–18 May 1999
Haralick R., Shanmugam K. and Dinstein I. (1973). Textural features for image classification. IEEE Trans. Systems, Man Cybernet. 3(6): 610–621
Köster, K., Spann, M.: A robust approach to unsupervised segmentation of seismic data sets. Vis Interface 121–128 (1998)
Kovalev V., Petrou M. and Bondar Y. (1999). Texture anisotropy in 3D images. IEEE Trans. Image Process. 8(3): 346–360
Linari V., Santiago M., Pastore C., Azbel K. and Poupon M. (2003). Seismic facies analysis based on 3D multiattribute volume classification, La Palma field, Maracaibo, Venezuela. Leading Edge 22: 32–36
Lyons, W., Herrmann, F., Grotzinger, J.: Singularity analysis: a tool for extracting lithologic and stratigraphic content from seismic data. In: Ann. Intl. Mtg. Soc. Expl Geophys., Exp Abstr, pp. 587–590 (2001)
Meldahl, P., Hegglend, R., Bril, B., De Groot, P.: The chimney cube, an example of semi-automated detection of seismic objects by directive attributes and neural networks: Part I; Methodology. In: Ann. Intl. Mtg. Soc. Expl Geophys., Exp Abstr, pp. 931–934 (1999)
Milkereit B. (1987). Decomposition and inversion of seismic data—an instantaneous slowness approach. Geophys Prospect. 35: 875–894
Mitchum, R., Vail, P., Sangree, J.: Stratigraphic interpretation of seismic reflection patterns in depositional sequences. In: Seismic Stratigraphy—Applications to Hydrocarbon Exploration, pp. 117–133. American Association of Petroleum Geologists (1977)
Special section: Carbonate geophysics. Leading Edge 22(7), 637–698 (2003)
O’Malley S.M. and Kakadiaris I.A. (2004). Towards robust structure-based enhancement and horizon picking in 3D seismic data. IEEE Conf. Comput. Vis. Pattern Recogn. 2: 482–489
Pegoraro, R., Stewart, R.: Crewes research report: Chapter 32—3D seismic analysis using remote sensing techniques. Technical Report 7, Department of Geology and Geophysics, University of Calgary (1995)
Radovich B. and Oliveras R. (1998). 3D sequence interpretation of seismic instantaneous attributes from the gorgon field. Leading Edge 17(9): 1286–1293
Randen, T., Monsen, E., Signer, C., Abrahamsen, A., Hansen, J.O., Saeter, T., Schlaf, J.: Three dimensional texture attributes for seismic data analysis. In: Ann. Intl. Mtg. Soc. Expl Geophys., Exp Abstr, pp. 668–671 (2000)
Randen, T., Reymond, B., Sjulstad, H., Sonneland, L.: New seismic attributes for automated seismic facies boundary detection. In: Ann. Intl. Mtg. Soc. Expl Geophys., Exp Abstr, pp. 628–631 (1998)
Simaan, M.: Artificial neural network classification of texture orientations in seismic images. In: IEEE International Geoscience and Remote Sensing Symposium, Honolulu, vol. II, pp. 693–695 (2000)
van Spaendonck, R.L.C., Steeghs, T.P.H., Overeem, I., Fernandes, F.C.A., Fokkema, J.T.: Wavelet based volume attributes for seismic interpretation. The 63rd annual meeting of the European Association of Geoscientists and Engineers, 11–15 July 2001, Amsterdam
Tingdahl K. (2003). Improving seismic chimney detection using directional attributes. In: Nikravesh, M., Aminzahed, F. and Zadeh, L. (eds) Developments in Petroluem Science, pp 157–173. Elsevier, Amsterdam
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Deighton, M., Petrou, M. Data mining for large scale 3D seismic data analysis. Machine Vision and Applications 20, 11–22 (2009). https://doi.org/10.1007/s00138-007-0101-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00138-007-0101-3