Skip to main content
Log in

Multiple target tracking with lazy background subtraction and connected components analysis

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Background subtraction, binary morphology, and connected components analysis are the first processing steps in many vision-based tracking applications. Although background subtraction has been the subject of much research, it is typically treated as a stand-alone process, dissociated from the subsequent phases of object recognition and tracking. This paper presents a method for decreasing computational cost in visual tracking systems by using track state estimates to direct and constrain image segmentation via background subtraction and connected components analysis. We also present a multiple target tracking application that uses the technique to achieve a large reduction in computation costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkeson, C.G., Moore, A.W., Schaal, S.: Locally weighted learning. Artif. Intell. Rev. 11(1–5), 11–73 (1997). http://citeseer.ist.psu.edu/atkeson96locally.html

    Google Scholar 

  2. Bar-Shalom Y. and Fortmann T. (1987). Tracking and data association. Academic, San Diego

    Google Scholar 

  3. Cheung S.C. and Kamath C. (2004). Robust techniques for background subtraction in urban traffic video. In: Panchanathan, S. and Vasudev, B. (eds) Proceedings of Electronic Imaging: Visual Communications and Image Processing 2004 (Part 1), vol. 5308, pp 881–892. SPIE, San Jose

    Google Scholar 

  4. Collins J. and Uhlmann J. (1992). Efficient gating in data association with multivariate gaussian distributed states. IEEE Trans Aero Elec. Syst. 28(3): 909–916

    Article  Google Scholar 

  5. Cucchiara R., Grana C., Piccardi M. and Prati A. (2003). Detecting moving objects, ghosts, and shadows in video streams. IEEE Trans. Pattern Anal. Mach. Intell. 25(10): 1337–1342

    Article  Google Scholar 

  6. De Walther, U., Rutishauser, C.K., Perona, P.: On the usefulness of attention for object recognition. In: 2nd International Workshop on Attention and Performance in Computational Vision at ECCV04 (2004)

  7. Fuentes, L., Velastin, S.: People tracking in surveillance applications. In: PETS 2001. Hawaii, Hamilton (2001)

  8. Haritaoglu, I., Harwood, D., Davis, L.S.: W4S: A real-time system detecting and tracking people in 2 1/2d. In: ECCV (1), pp. 877–892 (1998)

  9. Harville, M.: A framework for high-level feedback to adaptive, per-pixel, mixture-of-gaussian background models. In: ECCV’02: Proceedings of the 7th European Conference on Computer Vision-Part III, pp. 543–560. Springer, London (2002)

  10. Itti L. and Koch C. (2001). Computational modeling of visual attention. Nat. Rev. Neurosci. 2(3): 194–203

    Article  Google Scholar 

  11. Kiril, A., Konstantinova, P.: Hypotheses pruning in jpda algorithm for multiple target tracking in clutter. In: International Conference Automatic and Informatics, pp. 45–48 (2003)

  12. Li, Y., Dore, A., Orwell, J.: Evaluating the performance of systems for tracking football players and ball. In: AVSS05, pp. 632–637 (2005)

  13. Lipton, A., Fujiyoshi, H., Patil, R.: Moving target classification and tracking from real-time video. In: Proceedings of the 1998 DARPA Image Understanding Workshop (IUW’98) (1998)

  14. Magee, D.: Tracking multiple vehicles using foreground, background and motion models. In: Proceedings of ECCV Workshop on Statistical Methods in Video Processing, pp. 7–12 (2002)

  15. Nillius, P., Sullivan, J., Carlsson, S.: Multi-target tracking - linking identities using bayesian network inference. In: CVPR 2006, pp. 2187–2194 (2006)

  16. Oh, S., Sastry, S.: A polynomial-time approximation algorithm for joint probabilistic data association. In: Proceedings American Control Conference (2005)

  17. Oliva, A., Torralba, A.B., Castelhano, M.S., Henderson, J.M.: Top-down control of visual attention in object detection. In: ICIP (1), pp. 253–256 (2003)

  18. Oliver, N.M., Rosario, B., Pentland, A.: A Bayesian computer vision system for modeling human interactions. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 831–843 (2000). http://citeseer.ist.psu.edu/oliver99bayesian.html

    Google Scholar 

  19. Orwell, J., Remagnino, P., Jones, G.: From connected components to object sequences. In: First IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, pp. 72–79. Grenoble, France (2000)

  20. Parkhurst D., Law K. and Niebur E. (2002). Modeling the role of salience in the allocation of overt visual attention. Vis. Res. 42(1): 107–123

    Article  Google Scholar 

  21. Rosales, R., Sclaroff, S.: Improved Tracking of Multiple Humans with Trajectory Predcition and Occlusion Modeling. Tech. Rep. BUCS-TR-1998-007, CS Department, Boston University (1998). http://www.cs.bu.edu/techreports/1998-007-tracking-multiple-humans.ps.Z

  22. Stark L., Privitera C., Yang H., Azzariti M., Ho Y., Blackmon T. and Chernyak D. (2001). Representation of human vision in the brain: How does human perception recognize images?. J. Electron. Imaging 10(1): 123–151

    Article  Google Scholar 

  23. Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In: CVPR, pp. 2246–2252. IEEE Computer Society, LOS Alamitos (1999)

  24. Stronger D. and Stone P. (2007). Selective visual attention for object detection on a legged robot. In: Lakemeyer, G., Sklar, E., Sorenti, D. and Takahashi, T. (eds) RoboCup-2006: Robot Soccer World Cup X, pp 158–170. Springer Verlag, Berlin

    Chapter  Google Scholar 

  25. Welch, G., Bishop, G.: An introduction to the kalman filter. Tech. Rep. TR 95-041, Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill (1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Abbott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbott, R.G., Williams, L.R. Multiple target tracking with lazy background subtraction and connected components analysis. Machine Vision and Applications 20, 93–101 (2009). https://doi.org/10.1007/s00138-007-0109-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-007-0109-8

Keywords

Navigation