Skip to main content

Advertisement

Log in

Computer vision system for high temperature measurements of surface properties

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Recently, computer vision systems have become very popular. They are of great importance in almost every field of science, engineering and industry. Present-day vision systems allow to obtain information that is normally not distinguishable by humans. It is possible due to use of appropriate digital image processing and analysis algorithms. The paper explains importance of proper image processing algorithms selection for computer vision applications. Particular industrial image quantitative analysis systems are considered. Computerized system for high-temperature measurements of surface properties is used as an example. The system is capable of measuring wetting angle and surface tension of metals, alloys and other materials (e.g. glass) in temperatures up to 1,800°C. A brief description of the system is given. Particularly, attention is paid to preprocessing algorithms. They consider not only typical factors that usually accompany digital images founded analysis but also specificity of images obtained during the measurement process as well. Correction of factors arising from CCD camera electronic components and reduction of aura (glow that appears around specimen in high temperatures) affects with high quality image segmentation. In consequence the accuracy of surface parameters determination is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamson, A.W., Gast, A.P.: Physical Chemistry of Surface. Wiley-Interscience, USA (1997)

    Google Scholar 

  2. Atae-Allah, C., Cabrerizo-Vílchez, M., Gómez-Lopera, J.F. et al.: Measurement of surface tension and contact angle using entropic edge detection. Meas. Sci. Technol. 12, 288–298 (2001)

    Article  Google Scholar 

  3. Emel’yanenko, A.M., Boinovich, L.B.: The use of digital processing of video images for determining parameters of sessile and pendant drops. Colloid J. 63(2), 159–172 (2001)

    Article  Google Scholar 

  4. Hansen, F.K.: Surface tension by image analysis: fast and automatic measurements of pendant and sessile drops and bubbles. J. Colloid Interface Sci. 160, 209–217 (1993)

    Article  Google Scholar 

  5. Cabrerizo-Vílchez, M.A., Wege, H.A., Holgado-Terriza, J.A.: Axisymmetric drop shape analysis as penetration Langmuir balance. Rev. Sci. Instrum. 70(5), 2438–2443 (1999)

    Article  Google Scholar 

  6. del Río, O.I., Neumann, A.W.: Axisymmetric drop shape analysis: computational methods for the measurement of interfacial properties from the shape and dimensions of pendant and sessile drops. J. Colloid Interface Sci. 196, 136–147 (1997)

    Article  Google Scholar 

  7. Wulf, M., Michel, S., Grundke, K. et al.: Simultaneous determination of surface tension and density of polymer melts using axisymmetric drop shape analysis. J. Colloid Interface Sci. 210, 172–181 (1999)

    Article  Google Scholar 

  8. Cabezasa, M.G., Batenib, A., Montanero, J.M., Neumannb, A.W.: A new drop-shape methodology for surface tension measurement. Appl. Sur. Sci. 38(14), 480–484 (2004)

    Article  Google Scholar 

  9. DeGennes, P., Brochard-Wyart, F., Quere, D.: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer, Germany (2003)

    Google Scholar 

  10. Hartland, S. (eds): Surface and Interfacial Tension: Measurement, Theory, and Applications. CRC, USA (2004)

    Google Scholar 

  11. DeGennes, P.G.: Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827–863 (1985)

    Article  Google Scholar 

  12. Bachevsky, R.S., Naidich, Y.V., Grygorenko, M.F., Dostojny, V.A.: Evaluation of errors in automatic image analysis determination of sessile drop shapes. In: Proceedings of International Conference on High Temperature Capillarity, Smolenice Castle, Poland, pp. 254–258 (1994)

  13. Huh, C., Reed, R.L.: A method for estimating interfacial tensions and contact angles from sessile and pendant drop shapes. J. Colloid and Interface Science 9, 1472–1484 (1983)

    Google Scholar 

  14. Hansen, F.K.: Surface tension by image analysis: fast and automatic measurements of pendant and sessile drops and bubbles. J. Colloid Interface Sci. 160, 209–217 (1993)

    Article  Google Scholar 

  15. Matveev V.M., Kheifets K.O., Philippov V.V., Popel P.S.: Automatic measurement of surface tension and density in melts by the sessile drop method. In: Proceedings of International Conference on High Temperature Capillarity, Smolenice Castle, pp. 259–263 (1994)

  16. Bachevsky R.S., Naidich Y.V., Grygorenko M.F., Dostojny V.A.: Evaluation of Errors in automatic Image Analysis Determination of Sessile Drop Shapes. In: Proceedings of International Conference on High temperature Capillarity, Smolenice Castle, pp. 254–258 (1994)

  17. G10 Contact Angle Measuring Instrument. Mat. Krüss GmbH, Hamburg (1995)

  18. http://www.kruss.info/images/pdf/DSA10_e.pdf

  19. VCA 2000 Video Contact Angle Meter. Mat. Kernco Instruments Co. Inc., El Paso (1999)

  20. Woodward R.P.: Two-Dimensional Contact Angle and Surface Tension Mapping. Ed. First Ten Angstroms, Portsmouth (1996)

  21. http://www.firsttenangstroms.com/products/products.html

  22. http://www.kruss.info/images/pdf/dsa100_e.pdf

  23. http://www.dataphysics.de/english/produkte.htm

  24. Gunter, I.A, Jacobson, D.M.: The GEC meniscograph solderability tester: adaptation to vacuum soldering. GEC Rev. 6(2), 86–89 (1990)

    Google Scholar 

  25. Vincent, J.H., Humpston, G.: Lead-free solders for electronics assembly. GEC J Res. 11, 76–89 (1994)

    Google Scholar 

  26. http://www.carbolite.com/products.asp

  27. Sankowski, D., Strzecha, K., Jezewski, S.: Digital image analysis in measurement of surface tension and wettability angle. In: Proceedings of International Conference on Modern Problems of Telecommunications, Computer Science and Engineers Training, Lviv-Slavskie, Ukraine, 129–130 (2000)

  28. Sankowski, D., Senkara, J., Strzecha, K., Jezewski, S.: Automatic investigation of surface phenomena in high temperature solid and liquid contacts. In: Proceedings of IEEE Instrumentation and Measurement Technology Conference IMTC, Budapest, Hungary, 1397–1400 (2001)

  29. Sankowski, D., Senkara, J., Strzecha, K.: Computerized system for assessment of quality of solders. In: Proceedings of International Conference on IEEE The Experience of Designing and Application of CAD Systems in Microelectronics, CADSM, Lviv-Slavske, Ukraine, 56–58 (2003)

  30. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, USA (2002)

    Google Scholar 

  31. Pratt, W.K.: Digital Image Processing. Wiley, USA (2001)

    Book  Google Scholar 

  32. Jahne, B.: Digital Image Processing. Springer, Germany (2002)

    Google Scholar 

  33. Young, I.T., Gerbrands, J.J., van Vliet, L.J.: Fundamentals of Image Processing. Delft University of Technology, The Netherlands (1998)

    Google Scholar 

  34. Howell, S.B.: Handbook of CCD Astronomy. Cambridge University Press, UK (2006)

    Google Scholar 

  35. Martinez, P., Klotz, A.: A Practical Guide to CCD Astronomy. Cambridge University Press, UK (1998)

    Google Scholar 

  36. Fabijanska, A., Sankowski, D.: Aura removal algorithm for high-temperature image quantitative analysis systems. In: Proceedings Internation Conference of Mixed Design of Integrated Circuits and Systems, MIXDES, Ciechocinek, Poland, pp. 617–621 (2007)

  37. Halliday, D., Resnick, R., Walker, J.: Fundamentals of Physics. Wiley, USA (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Fabijańska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabijańska, A., Sankowski, D. Computer vision system for high temperature measurements of surface properties. Machine Vision and Applications 20, 411–421 (2009). https://doi.org/10.1007/s00138-008-0135-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-008-0135-1

Keywords

Navigation