Abstract
We present a pose estimation method for rigid objects from single range images. Using 3D models of the objects, many pose hypotheses are compared in a data-parallel version of the downhill simplex algorithm with an image-based error function. The pose hypothesis with the lowest error value yields the pose estimation (location and orientation), which is refined using ICP. The algorithm is designed especially for implementation on the GPU. It is completely automatic, fast, robust to occlusion and cluttered scenes, and scales with the number of different object types. We apply the system to bin picking, and evaluate it on cluttered scenes. Comprehensive experiments on challenging synthetic and real-world data demonstrate the effectiveness of our method.
Similar content being viewed by others
References
Al-Hujazi E., Sood A.: Range image segmentation with applications to robot bin-picking using vacuum gripper. IEEE Trans. Syst. Man Cybern. 20(6), 1313–1325 (1990)
Berger, M., Bachler, G., Scherer, S.: Vision guided bin picking and mounting in a flexible assembly cell. In: Proceedings of the 13th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, pp. 109–117 (2000)
Besl P., McKay N.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)
Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: Proceedings of ACM SIGGRAPH, pp. 187–194 (1999)
Boughorbel F., Zhang Y., Kang S., Chidambaram U., Abidi B., Koschan A., Abidi M.: Laser ranging and video imaging for bin picking. Assembl. Autom. 23(1), 53–59 (2003)
Breitenstein, M.D., Kuettel, D., Weise, T., Gool, L.V., Pfister, H.: Real-time face pose estimation from single range images. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2008)
Chen Y., Medioni G.: Object modeling by registration of multiple range images. Comput. Vis. Image Underst. 10(3), 145–155 (1992)
Dorai C., Jain A.K.: Cosmos—a representation scheme for 3d free-form objects. IEEE Trans. Pattern Anal. Mach. Intell. 19(10), 1115–1130 (1997)
Gelfand, N., Mitra, N., Guibas, L., Pottmann, H.: Robust global registration. In: Proceedings of Eurographics Symposium on Geometry Processing, pp. 197–206 (2005)
General purpose gpu programming (gpgpu) website. http://www.gpgpu.org
Germann, M., Breitenstein, M.D., Park, I.K., Pfister, H.: Automatic pose estimation for range images on the gpu. In: Proceedings of International Conference on 3-D Digital Imaging and Modeling, pp. 81–88 (2007)
Greenspan M.: Geometric probing of dense range data. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 495–508 (2002)
Greenspan, M., Shang, L., Jasiobedzki, P.: Efficient tracking with the bounded hough transform. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. I-520–I-527 (2004)
Ikeuchi K.: Generating an interpretation tree from a cad model for 3d object recognition in bin-picking tasks. Int. J. Comput. Vis. 1(2), 145–165 (1987)
Johnson A.E., Hebert M.: Using spin images for efficient object recognition in cluttered 3d scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 433–449 (1999)
Jones M., Poggio T.: Multidimensional morphable models: a framework for representing and matching object classes. Int. J. Comput. Vis. 29(2), 107–131 (1998)
Jones, M.J., Viola, P.: Fast multi-view face detection. Technical Report TR2003-96, Mitsubishi Electric Research Laboratories (2003)
Lamdan, Y., Wolfson, H.: Geometric hashing: a general and efficient model-based recognition sceme. In: Proceedings of International Conference on Computer Vision, pp. 238–249 (1988)
Lee, J., Moghaddam, B., Pfister, H., Machiraju, R.: Finding optimal views for 3d face shape modeling. In: Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition, pp. 31–36 (2004)
Liebelt, J., Schmid, C., Schertler, K.: Viewpoint-independent object class detection using 3d feature maps. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2008)
MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)
Mian A.S., Bennamoun M., Owens R.: Three-dimensional model-based object recognition and segmentation in cluttered scenes. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 1584–1601 (2006)
Nelder J.A., Mead R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)
NVIDIA Corporation: Compute Unified Device Architecture (CUDA). http://developer.nvidia.com/object/cuda.html
NVIDIA Corporation: PhysX SDK. http://developer.nvidia.com/object/physx.html
Okuda H., Kitaaki Y., Hashimoto M., Kaneko S.: Hm-icp: fast 3-d registration algorithm with hierarchical and region selection approach of m-icp. J. Robot. Mechatron. 18(6), 765–771 (2006)
Owens J.D., Luebke D., Govindaraju N., Harris M., Krüger J., Lefohn A.E., Purcell T.J.: A survey of general-purpose computation on graphics hardware. Comput. Graph. Forum 26(1), 80–113 (2007)
Press W., Teukolsky S., Vetterling W., Flannery B.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge (1992)
Rahardja, K., Kosaka, A.: Vision-based bin-picking: recognition and localization of multiple complex objects using simple visual cues. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems pp. 1448–1457 (1996)
Rong, G.D., Tan, T.S.: Jump flooding in gpu with applications to voronoi diagram and distance transform. In: Proceedings of ACM Symposium on Interactive 3D Graphics and Games, pp. 109–116 (2006)
Rothganger, F., Lazebnik, S.J., Ponce, C.S.: 3d object modeling and recognition using affine-invariant patches and multi-view spatial constraints. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 272–277 (2003)
Rusinkiewicz S., Hall-Holt O., Levoy M.: Real-time 3d model acquisition. ACM Trans. Graph. 21(3), 438–446 (2002)
Rusinkiewicz, S., Levoy, M.: Efficient variants of the icp algorithm. In: Proceedings of International Conference on 3-D Digital Imaging and Modeling, pp. 145–152 (2001)
Schmid, C., Mohr, R.: Combining greyvalue invariants with local constraints for object recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 872–877 (1996)
Shang, L., Jasiobedzki, P., Greenspan, M.: Discrete pose space estimation to improve icp-based tracking. In: Proceedings of International Conference on 3-D Digital Imaging and Modeling, pp. 523–530 (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Park, I.K., Germann, M., Breitenstein, M.D. et al. Fast and automatic object pose estimation for range images on the GPU. Machine Vision and Applications 21, 749–766 (2010). https://doi.org/10.1007/s00138-009-0209-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00138-009-0209-8