Skip to main content
Log in

Fast and automatic object pose estimation for range images on the GPU

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

We present a pose estimation method for rigid objects from single range images. Using 3D models of the objects, many pose hypotheses are compared in a data-parallel version of the downhill simplex algorithm with an image-based error function. The pose hypothesis with the lowest error value yields the pose estimation (location and orientation), which is refined using ICP. The algorithm is designed especially for implementation on the GPU. It is completely automatic, fast, robust to occlusion and cluttered scenes, and scales with the number of different object types. We apply the system to bin picking, and evaluate it on cluttered scenes. Comprehensive experiments on challenging synthetic and real-world data demonstrate the effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Hujazi E., Sood A.: Range image segmentation with applications to robot bin-picking using vacuum gripper. IEEE Trans. Syst. Man Cybern. 20(6), 1313–1325 (1990)

    Article  Google Scholar 

  2. Berger, M., Bachler, G., Scherer, S.: Vision guided bin picking and mounting in a flexible assembly cell. In: Proceedings of the 13th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, pp. 109–117 (2000)

  3. Besl P., McKay N.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  4. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: Proceedings of ACM SIGGRAPH, pp. 187–194 (1999)

  5. Boughorbel F., Zhang Y., Kang S., Chidambaram U., Abidi B., Koschan A., Abidi M.: Laser ranging and video imaging for bin picking. Assembl. Autom. 23(1), 53–59 (2003)

    Article  Google Scholar 

  6. Breitenstein, M.D., Kuettel, D., Weise, T., Gool, L.V., Pfister, H.: Real-time face pose estimation from single range images. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2008)

  7. Chen Y., Medioni G.: Object modeling by registration of multiple range images. Comput. Vis. Image Underst. 10(3), 145–155 (1992)

    Google Scholar 

  8. Dorai C., Jain A.K.: Cosmos—a representation scheme for 3d free-form objects. IEEE Trans. Pattern Anal. Mach. Intell. 19(10), 1115–1130 (1997)

    Article  Google Scholar 

  9. Gelfand, N., Mitra, N., Guibas, L., Pottmann, H.: Robust global registration. In: Proceedings of Eurographics Symposium on Geometry Processing, pp. 197–206 (2005)

  10. General purpose gpu programming (gpgpu) website. http://www.gpgpu.org

  11. Germann, M., Breitenstein, M.D., Park, I.K., Pfister, H.: Automatic pose estimation for range images on the gpu. In: Proceedings of International Conference on 3-D Digital Imaging and Modeling, pp. 81–88 (2007)

  12. Greenspan M.: Geometric probing of dense range data. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 495–508 (2002)

    Article  Google Scholar 

  13. Greenspan, M., Shang, L., Jasiobedzki, P.: Efficient tracking with the bounded hough transform. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. I-520–I-527 (2004)

  14. Ikeuchi K.: Generating an interpretation tree from a cad model for 3d object recognition in bin-picking tasks. Int. J. Comput. Vis. 1(2), 145–165 (1987)

    Article  Google Scholar 

  15. Johnson A.E., Hebert M.: Using spin images for efficient object recognition in cluttered 3d scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 433–449 (1999)

    Article  Google Scholar 

  16. Jones M., Poggio T.: Multidimensional morphable models: a framework for representing and matching object classes. Int. J. Comput. Vis. 29(2), 107–131 (1998)

    Article  Google Scholar 

  17. Jones, M.J., Viola, P.: Fast multi-view face detection. Technical Report TR2003-96, Mitsubishi Electric Research Laboratories (2003)

  18. Lamdan, Y., Wolfson, H.: Geometric hashing: a general and efficient model-based recognition sceme. In: Proceedings of International Conference on Computer Vision, pp. 238–249 (1988)

  19. Lee, J., Moghaddam, B., Pfister, H., Machiraju, R.: Finding optimal views for 3d face shape modeling. In: Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition, pp. 31–36 (2004)

  20. Liebelt, J., Schmid, C., Schertler, K.: Viewpoint-independent object class detection using 3d feature maps. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2008)

  21. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)

  22. Mian A.S., Bennamoun M., Owens R.: Three-dimensional model-based object recognition and segmentation in cluttered scenes. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 1584–1601 (2006)

    Article  Google Scholar 

  23. Nelder J.A., Mead R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)

    MATH  Google Scholar 

  24. NVIDIA Corporation: Compute Unified Device Architecture (CUDA). http://developer.nvidia.com/object/cuda.html

  25. NVIDIA Corporation: PhysX SDK. http://developer.nvidia.com/object/physx.html

  26. Okuda H., Kitaaki Y., Hashimoto M., Kaneko S.: Hm-icp: fast 3-d registration algorithm with hierarchical and region selection approach of m-icp. J. Robot. Mechatron. 18(6), 765–771 (2006)

    Google Scholar 

  27. Owens J.D., Luebke D., Govindaraju N., Harris M., Krüger J., Lefohn A.E., Purcell T.J.: A survey of general-purpose computation on graphics hardware. Comput. Graph. Forum 26(1), 80–113 (2007)

    Article  Google Scholar 

  28. Press W., Teukolsky S., Vetterling W., Flannery B.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  29. Rahardja, K., Kosaka, A.: Vision-based bin-picking: recognition and localization of multiple complex objects using simple visual cues. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems pp. 1448–1457 (1996)

  30. Rong, G.D., Tan, T.S.: Jump flooding in gpu with applications to voronoi diagram and distance transform. In: Proceedings of ACM Symposium on Interactive 3D Graphics and Games, pp. 109–116 (2006)

  31. Rothganger, F., Lazebnik, S.J., Ponce, C.S.: 3d object modeling and recognition using affine-invariant patches and multi-view spatial constraints. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 272–277 (2003)

  32. Rusinkiewicz S., Hall-Holt O., Levoy M.: Real-time 3d model acquisition. ACM Trans. Graph. 21(3), 438–446 (2002)

    Article  Google Scholar 

  33. Rusinkiewicz, S., Levoy, M.: Efficient variants of the icp algorithm. In: Proceedings of International Conference on 3-D Digital Imaging and Modeling, pp. 145–152 (2001)

  34. Schmid, C., Mohr, R.: Combining greyvalue invariants with local constraints for object recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 872–877 (1996)

  35. Shang, L., Jasiobedzki, P., Greenspan, M.: Discrete pose space estimation to improve icp-based tracking. In: Proceedings of International Conference on 3-D Digital Imaging and Modeling, pp. 523–530 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In Kyu Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, I.K., Germann, M., Breitenstein, M.D. et al. Fast and automatic object pose estimation for range images on the GPU. Machine Vision and Applications 21, 749–766 (2010). https://doi.org/10.1007/s00138-009-0209-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-009-0209-8

Keywords

Navigation