Skip to main content

Advertisement

Log in

Assessment of the influence of adaptive components in trainable surface inspection systems

  • Special Issue
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In this paper, we present a framework for the classification of images in surface inspection tasks and address several key aspects of the processing chain from the original image to the final classification result. A major contribution of this paper is a quantitative assessment of how incorporating adaptivity into the feature calculation, the feature pre-processing, and into the classifiers themselves, influences the final image classification performance. Hereby, results achieved on a range of artificial and real-world test data from applications in printing, die-casting, metal processing and food production are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Campbell, J.G., Hashim, A.A., Murtagh, F.: Flaw detection in woven textiles using space-dependent fourier transform. In: Owens, F.J. (ed.) ISSC ’97, Irish Signals and Systems Conference, pp. 241–252 (1997)

  2. Cohen F.S., Fan Z., Attali S.: Automated inspection of textile fabrics using textural models. IEEE Trans. Pattern Anal. Mach. Intell. 13(8), 803–808 (1991)

    Article  Google Scholar 

  3. Ozdemir, S., Baykut, A., Meylani, R., Erçil, A., Ertüzün, A.: Comparative evaluation of texture analysis algorithms for defect inspection of textile products. In: Proceedings of International Conference on Pattern Recognition, pp. 1738–1741 (1998)

  4. Schael M.: Texture fault detection using invariant textural features. In: Radig, B., Florczyk, S. (eds) Proceedings of DAGM 2001, Pattern Recognition. LNCS, vol. 2191, pp. 17–24. Springer, Berlin (2001)

    Google Scholar 

  5. Kim C.W., Koivo A.J.: Hierarchical classification of surface defects on dusty wood boards. Pattern Recogn. Lett. 15, 713–721 (1994)

    Article  Google Scholar 

  6. Iivarinen, J., Visa, A.: An adaptive texture and shape based defect classification. In: Proceedings of International Conference on Pattern Recognition, vol. 1, pp. 117–123 (1998)

  7. Serafim, A.: Segmentation of natural images based on multiresolution pyramids linking: Application to leather defects detection. In: Proceedings of International Conference on Pattern Recognition, Kobe, Japan, pp. 41–44 (1992)

  8. Caleb-Solly P., Smith J.: Adaptive surface inspection via interactive evolution. Image Vis. Comput. 25(7), 1058–1072 (2007)

    Article  Google Scholar 

  9. Peters S., Koenig A.: Optimized texture operators for the automated design of image analysis systems: Non-linear and oriented kernels vs. gray value co-occurrence matrices. Int. J. Hybrid Intell. Syst. 4, 185–202 (2007)

    MATH  Google Scholar 

  10. Condurache, A.: A two-stage-classifier for defect classification in optical media inspection. In: Proceedings of the 16th International Conference on Pattern Recognition (ICPR’02), vol. 4, pp. 373–376 (2002)

  11. Yang X., Pang G.K.H., Yung N.H.C.: Robust fabric defect detection and classification using multiple adaptive wavelets. IEE Proc. Vis. Image Signal Process. 152, 715–723 (2005)

    Article  Google Scholar 

  12. Chen, C., Lai, S., Lee, W., Lin, C., Ku, T., Chen, C., Chung, Y.: Hausdorff distance based pcb inspection system with defect classification. In: Proceedings of SPIE. The International Society for Optical Engineering, vol. 6000, pp. 1–12 (2005)

  13. Dash M., Liu H.: Feature selection for classification. Int. J. Intell. Data Anal. 1, 131–156 (1997)

    Article  Google Scholar 

  14. Costanza C.M., Afifi A.A.: Comparison of stopping rules in forward stepwise discriminant analysis. J. Am. Stat. Assoc. 74, 777–785 (1979)

    Article  MATH  Google Scholar 

  15. Hand D.J.: Discrimination and classification. Wiley Series in Probability and Mathematical Statistics. Wiley, Chichester (1981)

    Google Scholar 

  16. Rao C.R.: Linear Statistical Inference and Its Applications. Wiley, New York (1965)

    MATH  Google Scholar 

  17. Kohavi R., John G.: Wrappers for feature subset selection. Artif. Intell. 97(1–2), 273–324 (1997)

    Article  MATH  Google Scholar 

  18. Kononenko, I.: Estimating attributes: Analysis and extensions of relief. In: Proceedings of ECML-94, Catania, Sicily, Springer Verlag, pp. 171–182 (1994)

  19. Reisert, M., Burkhardt, H.: Feature selection for retrieval purposes. In: Proceedings of the ICIAR’06, vol. 1, pp. 661–672. Pavoa do Varzim, Portugal (2006)

  20. Cardie, C.: Using decision trees to improve case-based learning. In: Proceedings of 10th International Conference on Machine Learning, pp. 25–32 (1993)

  21. Narendra P., Fukunaga K.: A branch and bound algorithm for feature subset selection. IEEE Trans. Comput. 26(9), 917–922 (1977)

    Article  MATH  Google Scholar 

  22. Guyon I., Elisseeff A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    Article  MATH  Google Scholar 

  23. Molina, L.C., Belanche, L., Nebot, A.: Feature selection algorithms: a survey and experimental evaluation. In: ICDM ’02: Proceedings of the 2002 IEEE International Conference on Data Mining, Maebashi City, Japan, pp. 306–311 (2002)

  24. Chen, H.T., Liu, T.L., Fuh, C.S.: Probabilistic tracking with adaptive feature selection. In: 17th International Conference on Pattern Recognition (ICPR’04), vol. 2, pp. 736–739 (2004)

  25. Collins, R., Liu, Y.: On-line selection of discriminative tracking features. In: Proceedings of the 2003 International Conference of Computer Vision (ICCV ’03), pp. 346–352 (2003)

  26. Azimi-Sadjadi, M.R.D.Y., Dobeck, G.J.: Adaptive feature mapping for underwater target classification. In: IJCNN ’99. International Joint Conference on Neural Networks, vol. 5, pp. 3221–3224 (1999)

  27. Krishnapuram B., Hartemink A.J., Carin L., Figueiredo M.A.T.: A Bayesian approach to joint feature selection and classifier design. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1105–1111 (2004)

    Article  Google Scholar 

  28. Duda R.O., Hart P.E.: Pattern Classification and Scene Analysis. Wiley, New York (1973)

    MATH  Google Scholar 

  29. Eitzinger C., Gmainer M., Heidl W., Lughofer E.: Increasing classification performance with adaptive features. In: Gasteratos, A., Vincze, M., Tsotsos, J. (eds) Proceedings of ICVS 2008. LNCS, vol. 5008, pp. 445–453. Springer, Santorini Island (2008)

    Google Scholar 

  30. Pekalska, E.: Dissimilarity representations in pattern recognition, concepts, theory and applications. Ph.D. thesis. Delft University of Technology, Delft (2005)

  31. El-Naqa I., Yang Y., Wernick M.N., Galatsanos N.P., Nishikawa R.M.: A support vector machine approach for detection of microcalcifications. IEEE Trans. Med. Imaging 21(12), 1552–1563 (2002)

    Article  Google Scholar 

  32. Nixon, M., Aquado, A.: Feature Extraction and Image Processing. Newnes (2002)

  33. Pernkopf F.: Detection of surface defects on raw steel blocks using Bayesian network classifiers. Pattern Anal. Appl. 7(3), 333–342 (2004)

    MathSciNet  Google Scholar 

  34. Wolpert D.H.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  MathSciNet  Google Scholar 

  35. Quinlan J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, Menlo Park (1993)

    Google Scholar 

  36. Breiman L., Friedman J., Stone C.J., Olshen R.A.: Classification and Regression Trees. Chapman and Hall, Boca Raton (1993)

    Google Scholar 

  37. Schölkopf B., Smola A.J.: Learning with Kernels—Support Vector Machines, Regularization, Optimization and Beyond. MIT Press, London (2002)

    Google Scholar 

  38. Vapnik V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  39. Breiman L.: Bagging predictors. Mach. Learn. 2(24), 123–140 (1996)

    Google Scholar 

  40. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Thirteenth International Conference on Machine Learning, pp. 148–156 (1996)

  41. Wasserman P.D.: Advanced Methods in Neural Computing. Van Nostrand Reinhold, New York (1993)

    MATH  Google Scholar 

  42. Wu X., Kumar V., Quinlan J.R., Ghosh J., Yang Q., Motoda H., McLachlan G.J., Ng A., Liu B., Yu P.S., Zhou Z., Steinbach M., Hand D.J., Steinberg D.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2008)

    Article  Google Scholar 

  43. Tahir, M.A., Smith, J.E.: Improving nearest neighbor classifier using tabu search and ensemble distance metrics. In: Proceedings of the Sixth IEEE International Conference on Data Mining, pp. 1086–1090. IEEE Computer Society, Hong Kong (2006)

  44. Tahir M.A., Smith J.E., Caleb-Solly P.: A novel feature selection based semi-supervised method for image classification. In: Gasteratos, A., Vincze, M., Tsotsos, J. (eds) Proceedings of ICVS 2008. LNCS, vol. 5008, pp. 484–493. Springer, Santorini Island (2008)

    Google Scholar 

  45. Stone M.: Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. 36, 111–147 (1974)

    MATH  Google Scholar 

  46. Grunditz, C.H., Walder, M., Spaanenburg, L.: Constructing a neural system for surface inspection. In: Proceedings of the International Joint Conference on Neural Networks 2005, pp. 1881–1886. Budapest, Hungary (2004)

  47. Gayubo, F., Gonzalez, J.L., Fuente, E.D.L., Miguel, F., Peran, J.R.: On-line machine vision system for detect split defects in sheet-metal forming processes. In: Proceedings of the 18th International Conference on Pattern Recognition, pp. 723–726. IEEE Computer Society, Los Alamitos (2006)

  48. Awad, M., Wang, L., Chin, Y., Khan, L., Chen, G., Chebil, F.: A framework for image classification. In: Proceedings of the 2006 IEEE Southwest Symposium on Image Analysis and Interpretation, pp. 134–138 (2006)

  49. Koulamis, A.D., Doulamis, N.D., Kollias, S.D.: Retrainable neural networks for image analysis and classification. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, pp. 3558–3563, IEEE Press, Piscataway (1997)

  50. Lughofer E.: Extensions of vector quantization for incremental clustering. Pattern Recogn. 41(3), 995–1011 (2008)

    Article  MATH  Google Scholar 

  51. Lughofer, E., Angelov, P., Zhou, X.: Evolving single- and multi-model fuzzy classifiers with FLEXFIS-Class. In: Proceedings of FUZZ-IEEE 2007, pp. 363–368, London (2007)

  52. Kruse R., Gebhart J., Klawonn F.: Fuzzy Systeme. B.G. Teubner, Stuttgart (1993)

    Google Scholar 

  53. Lughofer E.: FLEXFIS: A robust incremental learning approach for evolving TS fuzzy models. IEEE Trans. Fuzzy Syst. (special issue on evolving fuzzy systems) 16(6), 1393–1410 (2008)

    Google Scholar 

  54. Mitchell T.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  55. Kuncheva L.I., Whitaker C.J., Shipp C.A., Duin R.P.W.: Limits on the majority vote accuracy in classifier fusion. Pattern Anal. Appl. 6(1), 22–31 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  56. Cho S.B., Kim J.H.: Combining multiple neural networks by fuzzy integral for robust classification. IEEE Trans. Syst. Man Cybern. 25(2), 380–384 (1995)

    Article  Google Scholar 

  57. Kuncheva L.I., Bezdek J.C., Duin R.P.W.: Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recogn. 34(2), 299–314 (2001)

    Article  MATH  Google Scholar 

  58. Rogova G.L.: Combining the results of several neural network classifiers. Neural Netw. 7(5), 777–781 (1994)

    Article  Google Scholar 

  59. Sannen D., Van Brussel H., Nuttin M.: Classifier fusion using discounted Dempster–Shafer combination. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. Fifth International Conference, MLDM 2007, Poster Proceedings, pp. 216–230. IBaI Publishing, Leipzig (2007)

    Google Scholar 

  60. Kuncheva L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley, New York (2004)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Eitzinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eitzinger, C., Heidl, W., Lughofer, E. et al. Assessment of the influence of adaptive components in trainable surface inspection systems. Machine Vision and Applications 21, 613–626 (2010). https://doi.org/10.1007/s00138-009-0211-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-009-0211-1

Keywords