Skip to main content

Advertisement

Log in

The application of support vector machine classification to detect cell nuclei for automated microscopy

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

The detection of cell nuclei for diagnostic purposes is an important aspect of many medical laboratory examinations. Precise location of cell nuclei can aid in correct diagnosis and aid in automated microscopy applications, such as cell counting and tissue architecture analysis. In this paper, we investigate the use of support vector machine classification based on Laplace edge features for this task. Compared with existing applications, we used only one type of cell nucleus images to train the classifier but this classifier can locate other two types of cell nuclei with different stains and scales successfully. The results illustrate that such a data driven approach has remarkable detection and generalization performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P.: Molecular Biology of the Cell. Garland Science, Oxford (2002)

    Google Scholar 

  2. Burges C.J.C.: A tutorial on support vector machines for pattern. Data Mining Knowl. Discov. 2, 121–167 (1998)

    Article  Google Scholar 

  3. Chang, C.C., Lin, C.J.: Libsvm—a library for support vector machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm/

  4. Cristianini N., Shawe-Tayor J.: An Introduction to Support Vector Machines. The Press Syndicate of The University of Cambridge, Cambridge (2000)

    Google Scholar 

  5. El-Naqa, I., Yang, Y.Y., Wernick, M.N., Galatsanos, N.P., Nishikawa, R.: Support vector machine learning for detection of microcalcifications in mammograms. In: IEEE Transactions on Medical Imaging, vol. 21, pp. 1552–1563 (2002)

  6. Glotsos, D., Spyridonos, P., Petalas, P., Cavouras, D., Ravazoula, P., Dadioti, P., Lekka, I., Nikiforidis G.: Computer-based malignancy grading of astrocytomas employing a support vector machine classifier, the who grading system and the regular hematoxylin-eosin diagnostic staining procedure. Anal. Quant. Cytol. Histol. 26 (2004)

  7. Han, J.W., Breckon, T., Randell, D., Landini, G.: Radicular cysts and odontogenic keratocysts epithelia classification using cascaded haar classifiers. In: McKenna, S., Hoey, J. (eds.) Proceedings of the Twelfth Annual Conference of Medical Image Understanding and Analysis, pp. 54–58. University of Dundee, UK (2008)

  8. Han, J.W., Lane, P.C.R., Davey, N., Sun, Y.: Comparing the performance of single-layer and two-layer support vector machines on face detection. In: Proceedings of The Seventh UK Workshop on Computational Intelligence (2007)

  9. Hearst M.A.: Support vector machines. IEEE Intell. Syst. 13, 18–28 (1998)

    Article  Google Scholar 

  10. Herold, J., Friedenberger, M., Bode, M., Rajpoot, N., Schubert, W., Nattkemper, T.W.: Flexible synapse detection in fluorescence micrographs by modeling human expert grading. In: Proceedings of 2008 IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1347–1350. IEEE (2008)

  11. Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide to support vector classification. http://citeseer.ist.psu.edu/689242.html

  12. Kohavi. R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, pp. 1137–1143 (1995)

  13. Kruk, M., Osowski, S., Koktysz, R.: Recognition of colon cells using ensemble of classifiers. In: Proceedings of International Joint Conference on Neural Networks, pp. 288–293 (2007)

  14. Landini, G.: Quantitative analysis of the epithelial lining architecture in radicular cysts and odontogenic keratocysts. Head Face Med. 2 (2006)

  15. Landini G., Othman I.E.: Architectural analysis of oral cancer, dysplastic, and normal epithelia. Cytometry Part A 61 A, 45–55 (2004)

    Article  Google Scholar 

  16. Mitchell, T.M.: Machine Learning. The McGraw-Hill Companies, Inc (1997)

  17. Mjolsness E., DeDoste D.: Machine learning for science: state of the art and future prospects. Science 293, 2051–2055 (2001)

    Article  Google Scholar 

  18. Nattkemper T.W., Ritter H.J., Schubert W.: A neural classifier enabling high-throughput topological analysis of lymphocytes in tissue sections. IEEE Trans. Inf. Technol. Biomed. 5, 138–149 (2001)

    Article  Google Scholar 

  19. Nattkemper, T.W., Twellmann, T., Schubert, W., Ritter, H.: Human vs. machine: evaluation of fluorescence micrographs. Comput. Biol. Med. 33 (2003)

  20. Rahman, Md.M., Desai, B.C., Bhattacharya, P.: Supervised machine learning based medical image annotation and retrieval. In: Accessing Multilingual Information Repositories. Lecture Notes in Computer Science, pp. 692–701. Springer, Berlin (2006)

  21. Robinson, M., Castellano, C.G., Adams, R., Davey, N., Sun, Y.: Identifying binding sites in sequential genomic data. In: Artificial Neural Networks—ICANN 2007, pp. 100–109, Porto, Portugal. Springer, Berlin (2007)

  22. Ruifrok A.C., Johnston D.A.: Quantification of histochemical staining by color deconvolution. Anal. Quant. Cytol. Histol. 23, 291–299 (2001)

    Google Scholar 

  23. Russ J.C.: The Image Processing Handbook. CRC Press, Inc, Boca Raton (1995)

    Google Scholar 

  24. Schölkopf B., Smola A.J.: Learning with Kernels. The MIT Press, Cambridge (2002)

    Google Scholar 

  25. Schnorrenberg, F., Pattichis, C., Kyriacou, K., Schizas, C.: Computer-aided detection of breast cancer nuclei. In: IEEE Trans. Inf. Technol. Biomed. 1, 128–140 (1997)

  26. Shear M.: Cysts of the oral regions. 3rd edn. Wright, Oxford (1992)

    Google Scholar 

  27. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, p. 511, Los Alamitos, CA, USA, IEEE Computer Society (2001)

  28. Wang, H., Zheng, C., Li, Y., Zhu, H., Yan, X.: Application of support vector machines to classification of blood cells. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 20 (2003)

  29. Wang, M., Zhou, X., Li, F., Huckins, J., King, R.W., Wong, S.T.C.: Novel cell segmentation and online svm for cell cycle phase identification in automated microscopy. Bioinformatics 24 (2008)

  30. Wei N., Flaschel E., Friehs K., Nattkemper T.W.: A machine vision system for automated non-invasive assessment of cell viability via dark field microscopy, wavelet feature selection and classification. BMC Bioinform. 9, 449 (2008)

    Article  Google Scholar 

  31. Wei, N., You, J., Friehs, K., Flaschel, E., Nattkemper, T.W.: An in situ probe for on-line monitoring of cell density and viability on the basis of dark field micfroscopy in conjunction with image processing and supervised machine learning. Biotechnol. Bioeng. 97 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Wan Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, J.W., Breckon, T.P., Randell, D.A. et al. The application of support vector machine classification to detect cell nuclei for automated microscopy. Machine Vision and Applications 23, 15–24 (2012). https://doi.org/10.1007/s00138-010-0275-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-010-0275-y

Keywords

Navigation