Skip to main content
Log in

Unsupervised active contours driven by density distance and local fitting energy with applications to medical image segmentation

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

This study presents an efficient variational region-based active contour model for segmenting images without priori knowledge about the object or background. In order to handle intensity inhomogeneities and noise, we propose to integrate into the region-based local intensity model a global density distance inspired by the Bhattacharyya flow. The local term based on local information of segmented image allows the model to deal with bias field artifact, which arises in data acquisition processes. The global term, which is based on the density distance between the probability distribution functions of image intensity inside and outside the active contour, provides information for accurate segmentation, keeps the curve from spilling, and addresses noise in the image. Intensive 2D and 3D experiments on many imaging modalities of medical fields such as computed tomography, magnetic resonance imaging, and ultrasound images demonstrate the effectiveness of the model when dealing with images with blurred object boundary, intensity inhomogeneities, and noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leemput V., Maes K., Vandermeulen D., Suetens P.: Automated model-based bias field correction of MR images of the brain. IEEE Trans. Med. Imaging 18(10), 885–896 (1999)

    Article  Google Scholar 

  2. Vovk U., Pernǔs F., Likar B.: A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans. Med. Imaging 26(3), 405–421 (2007)

    Article  Google Scholar 

  3. Ghanei A., Soltanian-Zadeh H., Windham J.P.: Segmentation of hippocampus from brain MRI using deformable contours. Comput. Med. Imaging Graph. 22(3), 203–216 (1988)

    Article  Google Scholar 

  4. Amini L., Soltanian-Zadeh H., Lucas C., Gity M.: Automatic segmentation of thalamus from brain MRI integrating fuzzy clustering and dynamic contours. IEEE Trans. Biomed. Eng. 51(5), 800–811 (2004)

    Article  Google Scholar 

  5. Ayed, I.B., Li, S., Ross, I.: Level set image segmentation with a statistical overlap constraint. In: Proceedings of Information Processing in Medical Imaging (IPMI) 2009, pp. 589–601

  6. Gomes J., Faugeras O.: Reconciling distance functions and level sets. J. Vis. Commun. Image Represent. 11(2), 209–223 (2000)

    Article  Google Scholar 

  7. Blake A., Isard M.: Active Contours. Springer, Cambridge (1998)

    Book  Google Scholar 

  8. Cremers D., Rousson M., Deriche R.: A review of statistical approaches to level set segmentation: Integrating color, texture, motion and shape. Int. J. Comput. Vis. 72(2), 195–215 (2007)

    Article  Google Scholar 

  9. Chan T., Vese L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  10. Song, B., Chan, T.: A Fast Algorithm for Level Set Based Optimization. UCLA CAM Report 02-68 (2002)

  11. Caselles V., Catte F., Coll T., Dibos F.: A geometric model for active contours in image processing. Numer. Math. 66(1), 1–31 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Caselles V., Kimmel R., Sapiro G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  13. Kass M., Witkin A., Terzopoulos D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  14. Xu C., Prince J.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3), 359–369 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li C., Liu J., Fox M.D.: Segmentation of external force field for automatic initialization and splitting of snakes. Pattern Recogn. 38(11), 1947–1960 (2005)

    Article  Google Scholar 

  16. Li C., Kao C., Gore J.C., Ding Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17(10), 1940–1949 (2008)

    Article  MathSciNet  Google Scholar 

  17. Ronfard R.: Region-based strategies for active contour models. Int. J. Comput. Vis. 13(2), 229–251 (1994)

    Article  Google Scholar 

  18. Vese L., Chan T.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

  19. Piovano, J., Rousson, M., Papadopoulo, T.: Efficient segmentation of piecewise smooth images. In: Proceedings of European Conference in Computer Vision (ECCV) (2007), pp. 709–720

  20. Lankton S., Tannenbaum A.: Localizing region-based active contour. IEEE Trans. Image Process. 17(11), 2029–2039 (2008)

    Article  MathSciNet  Google Scholar 

  21. Sum K.W., Cheung P.Y.S.: Vessel extraction under non-uniform illumination: a level set approach. IEEE Trans. Biomed. Eng. 55(1), 358–360 (2008)

    Article  Google Scholar 

  22. Li, C., Kao, C., Gui, C., Fox, M.D.: Level set evolution without re- initialization. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2005, pp. 430–436

  23. Mumford D., Shah J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tsai A., Yezzi A., Willsky A.S.: Curve evolution implementation of the Mumford–Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. Image Process. 10(8), 1169–1186 (2001)

    Article  MATH  Google Scholar 

  25. Grady L., Alvino C.: The piecewise smooth Mumford–Shah functional on an arbitrary graph. IEEE Trans. Image Process. 18(11), 2547–2561 (2009)

    Article  MathSciNet  Google Scholar 

  26. Bresson, X., Chan, T.: Non-local unsupervised variational image segmentation models. UCLA CAM Report 08-67 (2008)

  27. Malcolm, J., Rathi, Y., Tannenbaum, A.: Tracking through clutter using graph cuts. In: Proceedings of Non-rigid Registration and Tracking Through Learning (ICCV), (2007)

  28. Xu N., Ahuja N., Bansal R.: Object segmentation using graph cuts based active contours. Comput. Vis. Image Understand. 107(3), 210–224 (2007)

    Article  Google Scholar 

  29. Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph cuts. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), pp. 26–33 (2003)

  30. Sumengen B., Manjunath B.: Graph partitioning active contours (GPAC) for image segmentation. IEEE Trans. Patt. Anal. Mach. Intell. 28(4), 509–521 (2006)

    Article  Google Scholar 

  31. Brox, T.: From Pixels to Regions: Partial Differential Equations in mage Analysis, in Faculty of Mathematics and Computer Science. Saarland University, Germany: 66041 Saarbrücken (2005)

  32. Brox, T., Cremers, D.: On the statistical interpretation of the piecewise smooth Mumford Shah functional. In: Proceedings of Scale Space Var. Met. Comput. Vision, pp. 203–213 (2007)

  33. Michailovich O., Rathi Y., Tannenbaum A.: Image segmentation using active-contours driven by the Bhattacharyya gradient flow. IEEE Trans. Image Process. 16(11), 2787–2801 (2007)

    Article  MathSciNet  Google Scholar 

  34. Georgiou T., Michailovich O., Rathi Y., Malcolm J., Tannenbaum A.: Distribution metrics and image segmentation. Linear Algebra Appl. 425(2–3), 663–672 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kim J., Fisher J.W. III, Yezzi A., Cetin M., Willsky A.S.: A nonparametric statistical method for image segmentation using information theory and curve evolution. IEEE Trans. Image Process. 14(10), 1486–1502 (2005)

    Article  MathSciNet  Google Scholar 

  36. Truc, P.T.H., Kim, T., Lee, S., Lee, Y.: A study on the feasibility of Active Contours on CT bone segmentation. J. Dig. Imaging. ISSN: 0897-1889 (2009) (Published on-line)

  37. Zhang T., Freedman D.: Improving performance of distribution tracking through background mismatch. IEEE Trans. Patt. Anal. Mach. Intell. 27(2), 282–287 (2005)

    Article  Google Scholar 

  38. Freedman D., Zhang T.: Active contours for tracking distributions. IEEE Trans. Image Process. 13(4), 518–526 (2004)

    Article  Google Scholar 

  39. Houhou N., Thiran J.-P., Bresson X.: Fast texture segmentation based on semi-local region descriptor and active contour. Numer. Math. Theory Methods Appl. 2(4), 445–468 (2009)

    MathSciNet  MATH  Google Scholar 

  40. Ni K., Bresson X., Chan T., Esedoglu S.: Local histogram based segmentation using the Wasserstein distance. Int. J. Comput. Vis. 84(1), 97–111 (2009)

    Article  Google Scholar 

  41. Adam A., Kimmel R., Rivlin E.: On scene segmentation and histograms-based curve evolution. IEEE Trans. Patt. Anal. Mach. Intell. 31(9), 1708–1714 (2009)

    Article  Google Scholar 

  42. Aubert G., Barlaud M., Faugeras O., Jehan-Besson S.: Image segmentation using active contours: calculus of variations or shape gradients?. SIAM J. Appl. Math. 63(6), 2128–2154 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Rathi, Y., Michailovich, O., Malcolm, J., Tannenbaum, A.: Seeing the unseen: segmenting with distributions. In: Proceedings of International Conference on Signal and Image Processing (2006)

  44. Kailath T.: The divergence and Bhattacharyya distance measures in signal selection. IEEE Trans. Commun. Technol. 15(1), 52–60 (1967)

    Article  Google Scholar 

  45. Sethian J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  46. Adalsteinsson D., Sethian J.A.: A fast level set method for propagating interface. J. Comput. Phys. 118, 269–277 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  47. Xie X., Mirmehdi M.: MAC: magnetostatic active contour model. IEEE Trans. Pattern Anal. Mach. Intell. 30(4), 632–646 (2008)

    Article  Google Scholar 

  48. Zhang K., Song H., Zhang L.: Active contours driven by local image fitting energy. Pattern Recogn. 43(4), 1199–1206 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Kai Shyu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shyu, KK., Pham, VT., Tran, TT. et al. Unsupervised active contours driven by density distance and local fitting energy with applications to medical image segmentation. Machine Vision and Applications 23, 1159–1175 (2012). https://doi.org/10.1007/s00138-011-0373-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-011-0373-5

Keywords

Navigation