Skip to main content
Log in

A fast regularity measure for surface defect detection

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a fast regularity measure for defect detection in non-textured and homogeneously textured surfaces, with specific emphasis on ill-defined subtle defects. A small neighborhood window of proper size is first chosen and they slide over the entire inspection image in a pixel-by-pixel basis. The regularity measure for each image patch enclosed in the window is then derived from the eigenvalues of the covariance matrix formed by the variance–covariance of the x- and y-coordinates with the pixel gray levels as the weights for all pixel points in the window. The two eigenvalues of the weighted covariance matrix will be approximately the same when the image patch contains only a homogeneous region, whereas the two eigenvalues will be relatively different if the image patch in the window contains a defect. The smaller eigenvalue of the covariance matrix is then used as the regularity measure. The integral image technique is introduced to the computation of the regularity measure so that it is invariant to the neighborhood window size. The proposed method uses only one single discrimination feature for defect detection. It avoids the use of complicated classifiers in a high-dimensional feature space, and requires no learning process from a set of defective and defect-free training samples. Experimental results on a variety of material surfaces found in industry, including textured images of plastic surfaces and leather and non-textured images of backside solar wafers and LCD backlight panels, have shown the effectiveness of the proposed regularity measure for surface defect detection. It is computationally very fast, and takes only 0.032 s for a 400 × 400 image on a Pentium 3.00 GHz personal computer. In a test set of 73 backside solar wafer images involving 53 defect-free and 20 defective samples, the proposed regularity measure can correctly identify all the test images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Newman T.S., Jain A.K.: A survey of automated visual inspection. Comput. Vis. Image Underst. 61, 231–262 (1995)

    Article  Google Scholar 

  2. Xie X.: A review of recent advances in surface defect detection using texture analysis techniques. Electron. Lett. Comput. Vis. Image Anal. 7(3), 1–22 (2008)

    Google Scholar 

  3. Serdaroglu A., Ertuzun A., Ercil A.: Defect detection in textile fabric images using wavelet transforms and independent component analysis. Pattern Recognit. Image Anal. 16, 61–64 (2006)

    Article  Google Scholar 

  4. Brzakovic D., Beck H., Sufi N.: An approach to defect detection in materials characterized by complex textures. Pattern Recognit. 23, 99–107 (1990)

    Article  Google Scholar 

  5. Van Hulle M.M., Tollenaere T.: A modular artificial neural networks for texture processing. Neural Netw. 6, 7–32 (1993)

    Article  Google Scholar 

  6. Ruz G.A., Estevez P.A., Ramirez P.A.: Automated visual inspection system for wood defect classification using computational intelligence techniques. Int. J. Syst. Sci. 40, 163–172 (2009)

    Article  MATH  Google Scholar 

  7. Haralick R.M., Shanmugam K., Dinstein I.: Texture features for image classification. IEEE Trans. Syst. Man Cybernet. SMC 3, 610–621 (1973)

    Article  Google Scholar 

  8. Ramana K.V., Ramamoorthy B.: Statistical methods to compare the texture features of machined surfaces. Pattern Recognit. 29, 1447–1459 (1996)

    Article  Google Scholar 

  9. Zhang Y.F., Bresee R.R.: Fabric defect detection and classification using image analysis. Text. Res. J. 65, 1–9 (1995)

    Article  Google Scholar 

  10. Latif-Amet L., Ertuzun A., Ercil A.: An efficient method for texture defect detection: subband domain co-occurrence matrices. Image Vis. Comput. 18, 543–553 (2000)

    Article  Google Scholar 

  11. Kuo C.-F.J.: Automatic recognition of fabric nature by using the approach of texture analysis. Text. Res. J. 76, 375–382 (2006)

    Article  Google Scholar 

  12. Kwak C., Ventura J.A., Tofang-Sazi K.: Automated defect inspection and classification of leather fabric. Intell. Data Anal. 5, 355–370 (2001)

    Google Scholar 

  13. Lepisto, L., Kunttu, I., Autio, J., Visa, A.: Comparison of some content based image retrieval systems with rock texture images. In: Proceedings of the 10th Finnish Artificial Intelligence Conference, Oulu, Finland, December 16–17, 2002

  14. Ng H.F.: Automatic thresholding for defect detection. Pattern Recognit. Lett. 27, 1644–1649 (2006)

    Article  Google Scholar 

  15. Hocenski, Z., Vasilic, S., Hocenski, V.: Improved Canny edge detector in ceramic tiles defect detection. In: Proceedings of the 32nd Annual Conference on IEEE Industrial Electronics, Paris, France, November 7–10, 2006

  16. Liu S.-S., Jernigan M.E.: Texture analysis and discrimination in additive noise. Comput. Vis. Graphics Image Process. 49, 52–67 (1990)

    Article  Google Scholar 

  17. Tsai D.M., Tseng C.F.: Surface roughness classification for castings. Pattern Recognit. 32, 389–405 (1999)

    Article  Google Scholar 

  18. Chan C.-H, Pang K.-H.: Fabric defect detection by Fourier analysis. IEEE Trans. Ind. Appl. 36, 1267–1276 (2000)

    Article  Google Scholar 

  19. Sengottuvelan P., Wahi A., Shanmugarn A.: Automatic fault analysis of textile fabric using imaging systems. Res. J. Appl. Sci. 3, 26–31 (2008)

    Google Scholar 

  20. Tsai D.M., Hsieh C.Y.: Automated surface inspection for directional textures. Image Vis. Comput. 18, 49–62 (1999)

    Article  Google Scholar 

  21. Tsai D.M., Huang T.Y.: Automated surface inspection for statistical textures. Image Vis. Comput. 21, 307–323 (2003)

    Article  Google Scholar 

  22. Porat M., Zeevi Y.Y.: The generalized Gabor scheme of image representation in biological and machine vision. IEEE Trans. Pattern Anal. Mach. Intell. 10, 452–468 (1988)

    Article  MATH  Google Scholar 

  23. Weldon T.P., Higgins W.E., Dunn D.F.: Efficient Gabor filter design for texture segmentation. Pattern Recognit. 29, 2005–2015 (1996)

    Article  Google Scholar 

  24. Wang J., Asundi A.K.: A computer vision system for wineglass defect inspection via Gabor-filter based texture features. Inf. Sci. 127, 157–171 (2000)

    Article  Google Scholar 

  25. Tsai D.M., Lin C.P., Huang K.T.: Defect detection in coloured surfaces using Gabor filters. Image Sci. 53, 27–37 (2005)

    Article  Google Scholar 

  26. Paschos G.: Fast color texture recognition using chromaticity moments. Pattern Recognit. Lett. 21, 837–841 (2000)

    Article  Google Scholar 

  27. Wiltschi K., Pinz A., Lindeberg T.: An automatic assessment scheme for steel quality inspection. Mach. Vis. Appl. 12, 113–128 (2000)

    Article  Google Scholar 

  28. Meriaudeau, F., Truchetet, F., Laligant O., Bourgeat, P.: Gabor filters in industrial inspection: a review. Application to semiconductor industry. In: Proceedings of the SPIE, Boston, MA, USA, October 24, 2005

  29. Bodnarova A., Bennamoun M., Latham S.: Optimal Gabor filters for textile flaw detection. Pattern Recognit. 35, 2973–2991 (2002)

    Article  MATH  Google Scholar 

  30. Mark K.L., Peng P.: An automated inspection system for textile fabrics based on Gabor filters. Robot. Comput.-Integr. Manuf. 24, 359–369 (2008)

    Article  Google Scholar 

  31. Mallat S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989)

    Article  MATH  Google Scholar 

  32. Arivazhangan S., Ganesan L.: Texture segmentation using wavelet transform. Pattern Recognit. Lett. 24, 3197–3203 (2003)

    Article  Google Scholar 

  33. Kumar V., Raju U.S.N., Mani M.R., Rao A.L.N.: Wavelet based texture segmentation methods based on combinatorial of morphological and statistical operations. Int. J. Comput. Sci. Netw. Secur. 8, 176–181 (2008)

    Google Scholar 

  34. Lambert, G., Bock, F.: Wavelet method for texture defect detection. In: Proceedings of IEEE Int. Conf. Image Process., Washington, DC, USA, October 26–29, 1997

  35. Sobral J.L.: Leather inspection based on wavelets. Lect. Notes Comput. Sci. 3523, 682–688 (2005)

    Article  Google Scholar 

  36. Liu J., MacGregor J.: Estimation and monitoring of product aesthetics: application to manufacturing of “engineered stone” countertops. Mach. Vis. Appl. 16, 374–383 (2006)

    Article  Google Scholar 

  37. Ferreira M.J., Santos C., Monteiro J.: Cork parquet quality control vision system based on texture segmentation and fuzzy grammar. IEEE Trans. Ind. Electron. 56, 756–765 (2009)

    Article  Google Scholar 

  38. Yang X., Pang G., Yung N.: Robust fabric defect detection and classification using multiple adaptive wavelets. Proc. IEE Vis. Image Process. 152, 715–723 (2005)

    Article  Google Scholar 

  39. Scharcanski J.: Stochastic texture analysis for monitoring stochastic processes in industry. Pattern Recognit. Lett. 26, 1701–1709 (2005)

    Article  Google Scholar 

  40. Jasper W., Joines J., Brenzorich J.: Fabric defect detection using a genetic algorithm tuned wavelet filter. J. Text. Inst. 96, 43–54 (2005)

    Article  Google Scholar 

  41. Monadjemi, M., Mirmehdi, B.: Reconstructed eigenfilter matching for novelty detection in random textures. In: Proceedings of the 15th British Machine Vision Conference, London, September 7–9, 2004

  42. Chen, S., Hu, T., Liu, G., Pu, Z., Li, M., Du, L.: Defect classification algorithm for IC photomask based on PCA and SVM. In: Congress on Image and Signal Processing, pp. 491–496 (2008)

  43. Lu C.-J., Tsai D.M.: Defect inspection of patterned thin film transistor-liquid crystal display panels using a fast sub-image-based singular value decomposition. Int. J. Prod. Res. 42, 4331–4351 (2004)

    Article  MATH  Google Scholar 

  44. Xie X., Mirmehdi M.: TEXEMS: texture exemplars for defect detection on random textured surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 29, 1454–1464 (2007)

    Article  Google Scholar 

  45. Manduchi, R., Portilla, J.: Independent component analysis of textures. In: Proceedings of the IEEE International Conference on Computer Vision, Kerkyra, Greece, pp. 1054–1060 (1999)

  46. Jenssen R., Eltoft T.: Independent component analysis for texture segmentation. Pattern Recognit. 36, 2301–2315 (2003)

    Article  MATH  Google Scholar 

  47. Sezer O.G., Ercil A., Ertuzun A.: Using perceptual relation of regularity and anisotropy in the texture with independent component model for defect detection. Pattern Recognit. 40, 121–133 (2007)

    Article  MATH  Google Scholar 

  48. Tsneg Y.-H., Tsai D.-M.: Defect detection of uneven brightness in low-contrast images using basis image representation. Pattern Recognit. 43, 1129–1141 (2010)

    Article  MATH  Google Scholar 

  49. Ghoreyshi A., Vidal R., Mery D.: Segmentation of circular casting defects using a robust algorithm. Insight 47, 615–617 (2005)

    Article  Google Scholar 

  50. Li X., Tso S.K., Guan X.-P., Huang Q.: Improving automatic detection of defects in castings by applying wavelet technique. IEEE Trans. Ind. Electron. 53, 1927–1934 (2006)

    Article  Google Scholar 

  51. Malhi A., Gao R.X.: PCA-based feature selection scheme for machine defect classification. IEEE Trans. Instrum. Meas. 53, 1517–1525 (2004)

    Article  Google Scholar 

  52. Khelil M., Boudraa M., Kechida A., Drai R.: Classification of defects by the SVM method and the principal component analysis (PCA). World Acad. Sci. Eng. Technol. 9, 226–231 (2005)

    Google Scholar 

  53. Niskanen, M., Silven, O.: Comparison of dimensionality reduction methods for wood surface inspection. In: Proceedings of the SPIE, October 9, 2003

  54. Crow F.: Summed-area tables for texture mapping. Comput. Graph. 18, 207–212 (1984)

    Article  Google Scholar 

  55. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of IEEE Computer Vision and Pattern Recognition, Kauai, HI, USA, December 8–14, 2001

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Du-Ming Tsai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, DM., Chen, MC., Li, WC. et al. A fast regularity measure for surface defect detection. Machine Vision and Applications 23, 869–886 (2012). https://doi.org/10.1007/s00138-011-0403-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-011-0403-3

Keywords

Navigation