Skip to main content
Log in

Gradient convergence filters and a phase congruency approach for in vivo cell nuclei detection

  • Special Issue Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Computational methods used in microscopy cell image analysis have largely augmented the impact of imaging techniques, becoming fundamental for biological research. The understanding of cell regulation processes is very important in biology, and in particular confocal fluorescence imaging plays a relevant role for the in vivo observation of cells. However, most biology researchers still analyze cells by visual inspection alone, which is time consuming and prone to induce subjective bias. This makes automatic cell image analysis essential for large scale, objective studies of cells. While the classic approach for automatic cell analysis is to use image segmentation, for in vivo confocal fluorescence microscopy images of plants, such approach is neither trivial nor is it robust to image quality variations. To analyze plant cells in in vivo confocal fluorescence microscopy images with robustness and increased performance, we propose the use of local convergence filters (LCF). These filters are based in gradient convergence and as such can handle illumination variations, noise and low contrast. We apply a range of existing convergence filters for cell nuclei analysis of the Arabidopsis thaliana plant root tip. To further increase contrast invariance, we present an augmentation to local convergence approaches based on image phase information. Through the use of convergence index filters we improved the results for cell nuclei detection and shape estimation when compared with baseline approaches. Using phase congruency information we were able to further increase performance by 11% for nuclei detection accuracy and 4% for shape adaptation. Shape regularization was also applied, but with no significant gain, which indicates shape estimation was good for the applied filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bleau A., Leon L.J.: Watershed-based segmentation and region merging. Comput. Vis. Image Underst. 77(3), 317–370 (2000)

    Article  Google Scholar 

  2. Bresson, X., Vandergheynst, P., Thiran, J.: A priori information in image segmentation: energy functional based on shape statistical model and image information. In: Proceedings of International Conference on Image Processing, ICIP, pp. 428–428 (2003)

  3. Bunyak, F., Palaniappan, K., Nath, S.K., Baskin, T.I., Dong, G.: Quantitative cell motility for in vitro wound healing using level set-based active contour tracking. In: Proceedings of the IEEE International conference on Biomedical imaging (ISBI), pp. 1–4 (2011)

  4. Byun J., Verardo M.R., Sumengen B., Lewis G.P., Manjunath B.S., Fisher S.K.: Automated tool for the detection of cell nuclei in digital microscopic images: application to retinal images. Mol. Vis. 12, 949–960 (2006)

    Google Scholar 

  5. Campilho A., Garcia B., Toorn H., Wijk H., Campilho A., Scheres B.: Time-lapse analysis of stem-cell divisions in the Arabidopsis thaliana root meristem. Plant J. 48, 619–627 (2006)

    Article  Google Scholar 

  6. Chan T., Vese L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  7. Chen X., Zhou X., Wong S.T.C.: Automated segmentation, classification, and tracking of cancer cell nuclei in time-lapse microscopy. IEEE Trans. Biomed. Eng. 53(4), 762–766 (2006)

    Article  Google Scholar 

  8. Chen Y., Ladi E., Herzmark P., Robey E., Roysam B.: Automated 5-d analysis of cell migration and interaction in the thymic cortex from time-lapse sequences of 3-d multi-channel multi-photon images. J. Immunol. Methods 340(1), 65–80 (2009)

    Article  Google Scholar 

  9. Chen, Y., Quelhas, P., Campilho, A.: Low frame rate cell tracking: a delaunay graph matching approach. In: Proceedings of the IEEE International conference on Biomedical Imaging (ISBI), pp. 1–4 (2011)

  10. Clocksin, W.: Automatic segmentation of overlapping nuclei with high background variation using robust estimation and flexible contour models. In: Proceedings of the International Conference on Image Analysis and Processing, pp. 682–687 (2003)

  11. Dewitte W., Murray J.: The plant cell cycle. Annu. Rev. Plant Biol. 54, 235–297 (2003)

    Article  Google Scholar 

  12. Fang W., Chan K.L.: Incorporating shape prior into geodesic active contours for detecting partially occluded object. Pattern Recogn. 40, 2163–2172 (2007)

    Article  MATH  Google Scholar 

  13. Fok Y., Chan J., Chin R.: Automated analysis of nerve-cell images using active contour models. IEEE Trans. Med. Imaging 15, 353–368 (1996)

    Article  Google Scholar 

  14. Guan, P., Yan, H.: Blood cell image segmentation based on the hough transform and fuzzy curve tracing. In: International Conference on Machine Learning and Cybernetics (ICMLC), vol. 4, pp. 1696–1701 (2011)

  15. Hafiane, A., Bunyak, F., Palaniappan, K.: Clustering initiated multiphase active contours and robust separation of nuclei groups for tissue segmentation. In: International Conference on Pattern Recognition (ICPR), pp. 1–4 (2008)

  16. Hafiane, A., Bunyak, F., Palaniappan, K.: Fuzzy clustering and active contours for histopathology image segmentation and nuclei detection. In: Advanced Concepts for Intelligent Vision Systems, LNCS, vol. 5259, pp. 903–914. Springer, Berlin (2008)

  17. Han J., Breckon T., Randell D., Landini G.: The application of support vector machine classification to detect cell nuclei for automated microscopy. Mach. Vis. Appl. 23(1), 15–24 (2010)

    Article  Google Scholar 

  18. Harder, N., M-Bermudez, F., Godinez, W., Ellenberg, J., Eils, R., Rohr, K.: Automated analysis of mitotic cell nuclei in 3d fluorescence microscopy image sequences. In: Workshop on Bio-Image Informatics: Biological Imaging, Computer Vision and Data Mining (2008)

  19. Hu, M., Ping, X., Ding, Y.: A new active contour model and its application on cell segmentation. In: Proceedings of Control, Automation, Robotics and Vision Conference, pp. 1104–1107 (2004)

  20. Kobatake H., Hashimoto S.: Convergence index filter for vector fields. IEEE Trans. Image Process. 8(8), 1029–1038 (1999)

    Article  Google Scholar 

  21. Kovesi, P.: Image features from phase congruency. In: Videre, pp. 1–26 (1999)

  22. Kovesi, P.: Phase congruency detects corners and edges. In: Digital Image Computing: Techniques and Applications, pp. 309–318 (2003)

  23. Kube, P.: Properties of energy edge detectors. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 586–591 (1992)

  24. Leibe, B., Leonardis, A., Schiele, B.: Combined object categorization and segmentation with an implicit shape model. In: ECCV Workshop on Statistical Learning in Computer Vision, pp. 17–32 (2004)

  25. Leventon, M., Grimson, W., Faugeras, O.: Statistical shape influence in geodesic active contours. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 316–323 (2000)

  26. Li, C., Xu, C., Gui, C., Fox, M.D.: Level set evolution without re-initialization: a new variational formulation. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 430–436 (2005)

  27. Li K., Miller E.D., Chen M., Kanade T., Weiss L.E., Campbell P.G.: Cell population tracking and lineage construction with spatiotemporal context. Med. Image Anal. 12, 546–566 (2008)

    Article  Google Scholar 

  28. Lindeberg T.: Scale-space theory: a basic tool for analysing structures at different scales. J. Appl. Stat. 21(2), 224–270 (1994)

    Google Scholar 

  29. Marcuzzo, M., Guichard, T., Quelhas, P., Mendonça, A.M., Campilho, A.: Cell division detection on the Arabidopsis thaliana root. In: Proceedings of the Iberian Conference on Pattern Recognition and Image Analysis, LNCS, vol. 5524, pp. 168–175. Springer, Berlin (2009)

  30. Marcuzzo M., Quelhas P., Campilho A., Maria Mendonça A., Campilho A.: Automated Arabidopsis plant root cell segmentation based on svm classification and region merging. Comput Biol Med 39(9), 785–793 (2009)

    Article  Google Scholar 

  31. Marcuzzo, M., Quelhas, P., Mendonça, A.M., Campilho, A.: Evaluation of symmetry enhanced sliding band filter for plant cell nuclei detection in low contrast noisy fluorescent images. In: Proceedings of the International Conference on Image Analysis and Recognition, vol. 5627, pp. 824–831. Springer, Berlin (2009)

  32. Marcuzzo, M., Quelhas, P., Mendonça, A.M., Campilho, A.: Tracking of Arabidopsis thaliana root cells in time-lapse microscopy. In: Proceedings of the International Conference on Pattern Recognition (ICPR), pp. 1–4 (2009)

  33. Moore, P., Molloy, D.: A survey of computer-based deformable models. In: International Machine Vision and Image Processing Conference, pp. 55–66 (2007)

  34. Morrone M., Burr D.: Feature detection in human vision: a phase-dependent energy model. Proc. Roy. Soc. Lond. B Biol. Sci. 235(1280), 221–245 (1988)

    Article  Google Scholar 

  35. Mosaliganti, K., Gelas, A., Gouaillard, A., Megason, S.: Microscopy image analysis: Blob segmentation using geodesic active contours. Insight J. (2009)

  36. Otsu N.: A threshold selection method from gray level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  37. Pereira, C.S., Fernandes, H., Mendonça, A.M., Campilho, A.C.: Detection of lung nodule candidates in chest radiographs. In: Iberian Conference on Pattern Recognition and Image Analysis (2), pp. 170–177 (2007)

  38. Perona P., Malik J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)

    Article  Google Scholar 

  39. Quelhas P., Monay F., Odobez J.M., Gatica-Perez D., Tuytelaars T.: A thousand words in a scene. IEEE Trans. Pattern Anal. Mach. Intell. 29(9), 1575–1589 (2007)

    Article  Google Scholar 

  40. Quelhas, P., Marcuzzo, M., Oliveira, M.J., Mendonça, A.M., Campilho, A.: Cancer cell detection and invasion depth estimation in brightfield images. In: Proceedings of the British Machine Vision Conference (2009)

  41. Quelhas P., Marcuzzo M., Mendonça A.M., Campilho A.: Cell nuclei and cytoplasm joint segmentation using the sliding band filter. IEEE Trans. Med. Imaging 29(8), 1463–1473 (2010)

    Article  Google Scholar 

  42. Quelhas, P., Mendonça, A.M., Campilho, A.: 3d cell nuclei fluorescence quantification using sliding band filter. In: International Conference on Pattern Recognition (ICPR), pp. 2508–2511 (2010)

  43. Roberts T., McKenna S., Du C.J., Wuyts N., Valentine T., Bengough A.: Estimating the motion of plant root cells from in vivo confocal laser scanning microscopy images. Mach. Vis. Appl. 21, 921–939 (2010)

    Article  Google Scholar 

  44. Sanz L., Dewitte W., Forzani C., Patell F., Nieuwland J., Wen B., Quelhas P., Jager S.D., Titmus C., Campilho A., Ren H., Estelle M., Wang H., Murray J.A.: The Arabidopsis d-type cyclin cycd2;1 and the inhibitor ick2/krp2 modulate auxin-induced lateral root formation. Plant Cell 23, 641–660 (2011)

    Article  Google Scholar 

  45. Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in videos. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1–8 (2003)

  46. Tek, F.B., Dempster, A.G., Kale, I.: Blood cell segmentation using minimum area watershed and circle radon transformations. In: Ronse, C., Najman, L., Decencière, E. (eds.) Mathematical Morphology: 40 Years On, Computational Imaging and Vision, vol. 30, pp. 441–454. Springer, Netherlands (2005)

  47. Usaj M., Torkar D., Kanduser M., Mikalavcic D.: Cell counting tool parameters optimization approach for electroporation efficiency determination of attached cells in phase contrast images. J. Microsc. 241(3), 303–314 (2011)

    Article  Google Scholar 

  48. Vincent L., Soille P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13, 583–598 (1991)

    Article  Google Scholar 

  49. Wei, J., Hagihara, Y., Kobatake, H.: Detection of cancerous tumors on chest x-ray images candidate detection filter and its evaluation. In: Proceedings of International Conference on Image Analysis and Processing (ICIP), pp. 397–401 (1999)

  50. Wei, J., Hagihara, Y., Kobatake, H.: Edge detection and skeletonization using quantized localized phase. In: European Signal Processing Conference (EUSIPCO), pp. 1542–1546 (2009)

  51. Willamowski, J., Arregui, D., Csurka, G., Dance, C.R., Fan, L.: Categorizing nine visual classes using local appearance descriptors. In: ICPR Workshop on Learning for Adaptable Visual Systems, pp. 1–11 (2004)

  52. Willemse J., Kulikova O., Jong H., Bisseling T.: A new whole-mount dna quantification method and the analysis of nuclear DNA content in the stem-cell niche of Arabidopsis roots. Plant J. 55(5), 886–894 (2008)

    Article  Google Scholar 

  53. Xiong G., Zhou X., Ji L.: Automated segmentation of Drosophila RNAi fluorescence cellular images using deformable models. IEEE Trans. Circuits Syst. I 53(11), 2415–2424 (2006)

    Article  Google Scholar 

  54. Xiong, G., Zhou, X., Ji, L., Bradley, P., Perrimon, N., Wong, S.: Segmentation of Drosophila RNAI fluorescence images using level sets. In: Proceedings of IEEE International Conference on Image Processing, pp. 73–76 (2006)

  55. Xue, Q., Degrelle, S., Wang, J., Hue, I., Guillomot, M.: A level set based hybrid framework for confocal image segmentation. In: Proceedings of the IASTED International Conference on Biomedical Engineering, pp. 453–457 (2008)

  56. Yan P., Zhou X., Shah M., Wong S.T.C.: Automatic segmentation of high-throughput RNAi fluorescent cellular images. IEEE Trans. Inf. Technol. Biomed. 12(1), 109–117 (2008)

    Article  Google Scholar 

  57. Yang X., Li H., Zhou X.: Nuclei segmentation using marker-controlled watershed, tracking using mean-shift, and Kalman filter in time-lapse microscopy. IEEE Trans. Circuits Syst. 53(11), 2405–2414 (2006)

    Article  MathSciNet  Google Scholar 

  58. Yi Wang, F.H., Jiankun, H., Fengling, H.: Enhanced gradient-based algorithm for the estimation of fingerprint orientation fields. Appl. Math. Comput. 185, 823–833 http://seit.unsw.adfa.edu.au/staff/sites/hu/Sample_Publication/Elsevier_Wang.pdf

  59. Yin, Z., Bise, R., Chen, M., Kanade, T: Cell segmentation in microscopy imagery using a bag of local Bayesian classifiers. In: Proceedings of the IEEE International Conference on Biomedical Imaging (ISBI), pp. 125–128 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Quelhas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esteves, T., Quelhas, P., Mendonça, A.M. et al. Gradient convergence filters and a phase congruency approach for in vivo cell nuclei detection. Machine Vision and Applications 23, 623–638 (2012). https://doi.org/10.1007/s00138-012-0407-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-012-0407-7

Keywords

Navigation