Skip to main content

Advertisement

Log in

Breast cancer diagnosis from biopsy images with highly reliable random subspace classifier ensembles

  • Special Issue Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Accurate and reliable classification of microscopic biopsy images is an important issue in computer assisted breast cancer diagnosis. In this paper, a new cascade Random Subspace ensembles scheme with reject options is proposed for microscopic biopsy image classification. The classification system is built as a serial fusion of two different Random Subspace classifier ensembles with rejection options to enhance the classification reliability. The first ensemble consists of a set of Support Vector Machine classifiers that converts the original \(K\)-class classification problem into a number of \(K\) 2-class problems. The second ensemble consists of a Multi-Layer Perceptron ensemble, that focuses on the rejected samples from the first ensemble. For both of the ensembles, the reject option is implemented by relating the consensus degree from majority voting to a confidence measure, and abstaining to classify ambiguous samples if the consensus degree is lower than some threshold. We also investigated the effectiveness of a feature description approach by combining Local Binary Pattern (LBP) texture analysis, statistics derived using the Gray Level Co-occurrence Matrix (GLCM) and the Curvelet Transform. While the LBP analysis efficiently describes local texture properties and the GLCM reflects global texture statistics, the Curvelet Transform is particularly appropriate for the representation of piece-wise smooth images with rich edge information. The combined feature description thus provides a comprehensive biopsy image characterization by taking advantages of their complementary strengths. Using a benchmark microscopic biopsy image dataset, obtained from the Israel Institute of Technology, a high classification accuracy of \(99.25 \%\) was obtained (with a rejection rate of \(1.94 \%\)) using the proposed system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. http://ftp.cs.technion.ac.il/pub/projects/medic-image.

  2. http://www.csie.ntu.edu.tw/~cjlin/libsvm.

References

  1. Breast Cancer Facts& Figures 2009–2010, American Cancer Society (2010)

  2. Gaurav, A., Pradeep, P.V., Aggarwal, V., Yip, C.-H., Cheung, P.S.Y.: Spectrum of breast cancer in Asian women. World J. Surg. 31(5), 1031–1040 (2007)

    Article  Google Scholar 

  3. Linos, E., Spanos, D., Rosner, B.A., Linos, K., Hesketh, T., Qu, J.D., Gao, Y.-T., Zheng, Wei, Colditz, Graham A.: Effects of reproductive and demographic changes on breast cancer incidence in china: a modeling analysis. J. Natl. Cancer Inst. 100(19), 1352–1360 (2008)

    Article  Google Scholar 

  4. Arisio, R., Cuccorese, C., Accinelli, G., Mano, M.P., Bordon, R., Fessia, L.: Role of fine-needle aspiration biopsy in breast lesions: analysis of a series of 4,110 cases. Diagn. Cytopathol. 18(6), 462–467 (1998)

    Article  Google Scholar 

  5. Brook, A., El-Yaniv, R., Isler, E., Kimmel, R., Meir, R., Peleg, D.: Breast cancer diagnosis from biopsy images using generic features and SVMs. Tech. Rep. CS-2008-07, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Isreal (2006)

  6. Boucheron, L.E.: Object- and spatial-level quantitative analysis of multispectral histopathology images for detection and characterization of cancer. Ph.D. Thesis, University of California Santa Barbara, Santa Barbara, CA (2008)

  7. Loukas, C.: A survey on histological image analysis-based assessment of three major biological factors influencing radiotherapy: proliferation, hypoxia and vascluature. Comput. Methods Programs Biomed. 74(3), 183–199 (2004)

    Article  Google Scholar 

  8. Orlov, N., Shamir, L., Macura, T., Johnston, J., Eckley, D.M., Goldberg, I.G.: Wnd-charm: multi-purpose image classification using compound image transforms. Pattern Recognit. Lett. 29(11), 1684–1693 (2008)

    Article  Google Scholar 

  9. Tabesh, A., Teverovskiy, M., Pang, H.-Y., Kumar, V.P., Verbel, D., Kotsianti, A., Saidi, O.: Multifeature prostate cancer diagnosis and gleason grading of histological images. IEEE Trans. Med. Imaging 26(10), 1366–1378 (2007)

    Article  Google Scholar 

  10. Qureshi, H., Sertel, O., Rajpoot, N., Wilson, R., Gurcan, M.: Adaptive discriminant wavelet package transform and local binary patterns for meningioma subtype classification. MICCAI 2008, 196–204 (2008)

    Google Scholar 

  11. Gurcan, Metin N., Boucheron, L.E., Can, A., Madabhushi, A., Rajpoot, N.M., Yener, B.: Histopathological image analysis: a review. IEEE Rev. Boimed. Eng. 2, 147–171 (2009)

    Article  Google Scholar 

  12. Yang, P., Yang, Y.H., Zhou, B.B., Zomaya, A.Y.: A review of ensemble methods in bioinformatics. Curr. Bioinforma. 5(4), 296–308 (2010)

    Article  Google Scholar 

  13. Freund, Y.: Boosting a weak learning algorithm by majority. Inf. Comput. 121(2), 256–285 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience, New York (2004)

    Book  Google Scholar 

  15. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. PAMI 20, 832–844 (1998)

    Article  Google Scholar 

  16. Kuncheva, L.I., Rodriguez, J.J., Plumpton, C.O., Linden, D.E., Johnston, S.J.: Random subspace ensembles for FMRI classification. IEEE Trans. Med. Imaging. 29(2), 531–542 (2010)

    Article  Google Scholar 

  17. Bertoni, A., Folgieri, R., Valentini, G.: Biological and Artificial Intelligence Environments. Springer, Berlin (2008)

    Google Scholar 

  18. Pudil, P., Novovicova, J., Blaha, S., Kittler, J.: Multistage pattern recognition with reject option. In: Proceeding of the Eleventh IAPR International Conference on Pattern Recognition B, pp. 92–95 (1992)

  19. Alpaydin, E., Kaynak, C.: Cascading Classifiers. Kybernetika, vol. 34, pp. 369–374

  20. Kaynak, C.: Alpaydin, E.: Multistage cascading of multiple classifiers: one man’s noise is another man’s data. In: Proceedings of ICML, 2000, pp. 455–462 (2000)

  21. Chow, C.K.: On optimum recognition error and reject tradeoff. IEEE Trans. Inf. Theory IT–16(1), 41–46 (1970)

    Article  Google Scholar 

  22. Pudil, P., Novovicova, J., Blaha, S., Kittler, J.: Multistage pattern recognition with reject option. In: Proceedings of 11th IAPR International Conference on Pattern Recognition, vol. 2, pp. 92–95 (1992)

  23. Fumera, G., Roli, F.: Support vector machines with embedded reject option. In: International Workshop on Pattern Recognition with Support Vector Machines (SVM2002), pp. 68–82. Springer, Niagara Falls, Canada (2002)

  24. Giusti, N., Masulli, F., Sperduti, A.: A theoretical and experimental analysis of a two-stage system for classification. IEEE Trans. Pattern Anal. Mach. Intell. 24, 893–904 (2002)

    Article  Google Scholar 

  25. Nadeem, MSA., Zucker, J.-D., Hanczar, B.: Accuracy-rejection curves (ARCs) for comparing classification methods with a reject option. In: Proceedings of the Third International Workshop on Machine Learning in Systems Biology, Ljubljana, Slovenia, pp. 5–6 (2009)

  26. Hanczar, B., Dougherty, E.R.: Classification with reject option in gene expression data. Bioinformatics 24(17), 1889–1895 (2010)

    Article  Google Scholar 

  27. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (July 2002)

  28. Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. (2010) (accepted)

  29. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)

    Article  Google Scholar 

  30. Boland, M.V.: Quantitative description and automated classification of cellular protein localization patterns in fluorescence microscope images of mammalian cells. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh (1999)

  31. Clausi, D.A.: An analysis of co-occurence texture statistics as a function of grey level quantization. Can. J. Remote Sensing 28(1), 45–62 (2002)

    Article  Google Scholar 

  32. Soh, L.-K., Tsatsoulis, C.: Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Trans. Geosci. Remote Sensing 37(2), 780–795 (1999)

    Article  Google Scholar 

  33. Donoho, D., Duncan, M.: Digital Curvelet Transform: Strategy. Implementation and Experiments. Stanford University, Stanford (1999)

  34. Starck, J., Candes, E., Donoho, D.: The curvelet transform for image denoising. IEEE Trans. Image Process. 11, 670–684 (2002)

    Google Scholar 

  35. Candes, E., Donoho, D.: Curvelets: multiresolution representation, and scaling laws. In: Aldroubi, A., Laine, A.F., Unser, M.A. (eds.) Wavelet Applications in Signal and ImageProcessing VIII, Proceeding of the SPIE 4119 (2000)

  36. Candes, E., Demanet, L., Donoho, D., Ying, L.: Fast discrete curvelet transforms. Multiscale Model. Simul. 5, 861–899 (2006)

    Google Scholar 

  37. Ma, J., Plonka, G.: The curvelet transform: a review of recent applications. IEEE Signal Process. Mag. 27(2), 118–133 (2010)

    Article  Google Scholar 

  38. Meselhy Eltoukhy, M., Faye, I., Belhaouari Samir, B.: Breast cancer diagnosis in digital mammogram using multiscale curvelet transform. Comput. Med. Imaging Graph. 34, 269–276 (2010)

    Article  Google Scholar 

  39. Zhang, B., Pham, T.D.: Phenotype recognition with combined features and random subspace classifier ensemble. BMC Bioinforma. 12, 128 (2010)

    Article  Google Scholar 

  40. Zhang, P., Bui, T.D., Suen, C.Y.: A novel cascade ensemble classifier system with a high recognition performance on handwritten digits. Pattern Recognit. 40, 3415–3429 (2007)

    Article  MATH  Google Scholar 

  41. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Berlin (1995)

    Book  Google Scholar 

  42. Bishop, C.M.: Neural Networks for Pattern Recognition. Clarendon Press, Oxford (1995)

    Google Scholar 

  43. Kuncheva, L.I., Skurichina, M., Duin, R.P.: An experimental study on diversity for bagging and boosting with linear classifiers. Inf. Fusion 3(4), 245–258 (2002)

    Article  Google Scholar 

  44. Tax, D.M.J., Duin, R.P.W.: Growing a multi-class classifier with a reject option. Pattern Recognit. Lett. 29(10), 1565–1570 (2008)

    Article  Google Scholar 

  45. Tax, D.M.J., Duin, R.P.W.: Support vector domain description. Pattern Recognit. Lett. 20(11–13), 1191–1199 (1999)

    Article  Google Scholar 

  46. Lam, L., Suen, C.Y.: Application of majority voting to pattern recognition: an analysis of its behavior and performance. IEEE Trans. Syst. Man Cybern. Part A Syst. Human 27, 553–568 (1997)

    Article  Google Scholar 

  47. Giusti, N., Masuli, F., Sperduti, A.: Theoretical and experimental analysis of a two-stage system for classification. IEEE Trans. PAMI 24(7), 893–904 (2002)

    Article  Google Scholar 

  48. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New York (2001)

    MATH  Google Scholar 

  49. Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)

    MATH  Google Scholar 

  50. Breiman, L.: Bagging predictors. Mach. Learn. 26(2), 123–140 (1996)

    Google Scholar 

  51. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proceeding of 13th International Conference on Machine Learning, San Francisco, CA, USA. pp. 148–156 (1996)

  52. Breiman, L.: Random For. Machine Learning 45, 5–32 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yungang Zhang.

Additional information

The project is funded by China Jiangsu Provincial Natural Science Foundation Intelligent Bioimages Analysis, Retrieval and Management (BK2009146).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Zhang, B., Coenen, F. et al. Breast cancer diagnosis from biopsy images with highly reliable random subspace classifier ensembles. Machine Vision and Applications 24, 1405–1420 (2013). https://doi.org/10.1007/s00138-012-0459-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-012-0459-8

Keywords

Navigation