Skip to main content
Log in

Evaluating the effect of diffuse light on photometric stereo reconstruction

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Photometric stereo surface reconstruction requires each input image to be associated with a particular 3D illumination vector. This signifies that the subject should be illuminated in turn by various directional illumination sources. In real life, this directionality may be reduced by ambient illumination, which is typically present as a diffuse component of the incident light. This work assesses the photometric stereo reconstruction quality for various ratios of ambient to directional illuminance and provides a reference for the robustness of photometric stereo with respect to that illuminance ratio. In our analysis, we focus on the face reconstruction application of photometric stereo, as faces are convex objects with rich surface variation, thus providing a suitable platform for photometric stereo reconstruction quality evaluation. Results demonstrate that photometric stereo renders realistic reconstructions of the given surface for ambient illuminance as high as nine times the illuminance of the directional light component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alldrin, N., Kriegman, D.: A planar light probe. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 2324–2330 (2006)

  2. Argyriou, V., Petrou, M.: Recursive photometric stereo when multiple shadows and highlights are present. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–6 (2008)

  3. Argyriou, V., Petrou, M.: Photometric stereo: An overview. Adv. Imaging Electron Phys. 156, 1–54 (2009)

    Article  Google Scholar 

  4. Barsky, S., Petrou, M.: The 4-source photometric stereo technique for three-dimensional surfaces in the presence of highlights and shadows. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1239–1252 (2003)

    Article  Google Scholar 

  5. Basler AG: A500k users manual. www.baslerweb.com (website last visited in January 2013)

  6. Basri, R., Jacobs, D., Kemelmacher, I.: Photometric stereo with general, unknown lighting. Int. J. Comput. Vis. 72(3), 239–257 (2007)

    Article  Google Scholar 

  7. Bouganis, C.S., Brookes, M.: Multiple light source detection. IEEE Trans. Pattern Anal. Mach. Intell. 26(4), 509–514 (2004)

    Article  Google Scholar 

  8. Capak, P., Cowie, L., Hu, E., Barger, A., Dickinson, M., Fernández, E., Giavalisco, M., Komiyama, Y., Kretchmer, C., McNally, C., Miyazaki, S., Okamura, S., Stern, D.: A deep, wide field, optical, and near infrared catalog of a large area around the hubble deep field north. Astron. J. 127(1), 180–198 (2004)

    Article  Google Scholar 

  9. Chandraker, M., Jiamin, J.B., Ramamoorthi, R.: A theory of differential photometric stereo for general isotropic brdfs. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2505–2512 (2011)

  10. Debevec, P.E.: Rendering synthetic objects into real scenes: bridging traditional and image-based graphics with global illumination and high dynamic range photography. In: Annual Conference on Computer Graphics (ACM SIGGRAPH), pp. 189–198 (1998)

  11. Fattal, R.: Single image dehazing. In: ACM SIGGRAPH 2008 papers, 72:1–9 (2008)

  12. Frankot, R., Chellappa, R.: A method for enforcing integrability in shape from shading algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 10(4), 439–451 (1988)

    Article  MATH  Google Scholar 

  13. Hansen, M.F., Atkinson, G.A., Smith, L.N., Smith, M.L.: 3D face reconstructions from photometric stereo using near infrared and visible light. Comput. Vis. Image Underst. 114(8), 942–951 (2010)

    Article  Google Scholar 

  14. Hara, K., Nishino, K., lkeuchi, K.: Light source position and reflectance estimation from a single view without the distant illumination assumption. IEEE Trans. Pattern Anal. Mach. Intell. 27(4), 493–505 (2005)

    Article  Google Scholar 

  15. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 99(1), 1956–1963 (2010)

    Google Scholar 

  16. Hernández, C., Vogiatzis, G., Brostow, G., Stenger, B., Cipolla, R.: Non-rigid photometric stereo with colored lights. In: IEEE International Conference on Computer Vision (ICCV), pp. 1–8 (2007)

  17. Hernandez, C., Vogiatzis, G., Cipolla, R.: Multiview photometric stereo. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 548–554 (2008)

    Article  Google Scholar 

  18. Hernández, C., Vogiatzis, G., Cipolla, R.: Overcoming shadows in 3-source photometric stereo. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 419–426 (2011)

    Article  Google Scholar 

  19. Hertzmann, A., Seitz, S.: Example-based photometric stereo: shape reconstruction with general, varying brdfs. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1254–1264 (2005)

    Article  Google Scholar 

  20. Higo, T., Matsushita, Y., Joshi, N., Ikeuchi, K.: A hand-held photometric stereo camera for 3-d modeling. In: IEEE International Conference on Computer Vision (ICCV), pp. 1234–1241 (2009)

  21. Horn, B.: Robot Vis. The MIT Press, Cambridge (1986)

    Google Scholar 

  22. Jaffe, J.S.: Computer modeling and the design of optimal underwater imaging systems. IEEE J. Ocean. Eng. 15(2), 101–111 (1990)

    Article  MathSciNet  Google Scholar 

  23. Liao, M., Huang, X., Yang, R.: Interreflections removal for photometric stereo by using spectrum-dependent albedo. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 689–696 (2011)

  24. Lim, J., Ho, J., Yang, M.H., Kriegman, D.: Passive photometric stereo from motion. In: IEEE International Conference on Computer Vision (ICCV), vol. 2, pp. 1635–1642 (2005)

  25. McCartney, E.: Optics of the atmosphere: Scattering by molecules and particles (1976)

  26. Mortazavi, H., Oakley, J.: Underwater Image Enhancement. University of Manchester, Manchester (2010)

    Google Scholar 

  27. Narasimhan, S., Nayar, S., Sun, B., Koppal, S.: Structured light in scattering media. In: IEEE International Conference on Computer Vision (ICCV), pp. 420–427 (2005)

  28. Narasimhan, S.G., Nayar, S.K.: Vision and the atmosphere. Int. J. Comput. Vis. 48, 233–254 (2002)

    Article  MATH  Google Scholar 

  29. Narasimhan, S.G., Nayar, S.K.: Contrast restoration of weather degraded images. In: ACM SIGGRAPH ASIA 2008 courses, SIGGRAPH, Asia ’08, pp. 70:1–70:12 (2008)

  30. Oakley, J., Satherley, B.: Improving image quality in poor visibility conditions using a physical model for contrast degradation. IEEE Trans. Image Process 7(2), 167–179 (1998)

    Google Scholar 

  31. Petrou, M., Petrou, C.: Image Processing: The Fundamentals, 2nd edn. Wiley, London (2010)

  32. Sekonic Corporation: Sekonic flashmate l308s operating manual. www.sekonic.com (website last visited in January 2013)

  33. Takai, T., Niinuma, K., Maki, A., Matsuyama, T.: Difference sphere: an approach to near light source estimation. In: IEEE International Conference on Computer Vision (CVPR), vol. 1, pp. 98–105 (2004)

  34. Tankus, A., Kiryati, N.: Photometric stereo under perspective projection. In: IEEE International Conference on Computer Vision (ICCV), vol. 1, pp. 611–616 (2005)

  35. Vlasic, D., Peers, P., Baran, I., Debevec, P., Popovic, J., Rusinkiewicz, S., Matusik, W.: Dynamic shape capture using multi-view photometric stereo. ACM Trans. Graph. 28(5), 174:1–174:11 (2009)

    Article  Google Scholar 

  36. Weber, M., Blake, A., Cipolla, R.: Towards a complete dense geometric and photometric reconstruction under varying pose and illumination. Image Vis. Comput. 22(10), 787–793 (2004)

    Article  Google Scholar 

  37. Weber, M., Cipolla, R.: A practical method for estimation of point light-sources. In: British Machine Vision Conference (BMVC), vol. 2, pp. 471–480 (2001)

  38. Woodham, R.: Photometric method for determining surface orientation from multiple images. Opt. Eng. 19(1), 139–144 (1980)

    Article  Google Scholar 

  39. Zafeiriou, S., Hansen, M., Atkinson, G., Petrou, M., Smith, M.: Baseline face recognition using photometric stereo data. In: International Conference and Exhibition on Biometrics Technology (ICEBT), vol. 2, pp. 20–25 (2010)

  40. Zhang, L., Curless, B., Hertzmann, A., Seitz, S.: Shape and motion under varying illumination: unifying structure from motion, photometric stereo, and multiview stereo. In: IEEE International Conference on Computer Vision (CVPR), vol. 1, pp. 618–625 (2003)

  41. Zhou, S., Aggarwal, G., Chellappa, R., Jacobs, D.: Appearance characterization of linear lambertian objects, generalized photometric stereo, and illumination-invariant face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 230–245 (2007)

    Article  Google Scholar 

  42. Zhou, W., Kambhamettu, C.: Estimation of illuminant direction and intensity of multiple light sources. In: European Conference on Computer Vision (ECCV), pp. 206–220 (2002).

Download references

Acknowledgments

The authors would like to acknowledge the contribution of Dr. Vasileios Argyriou and Dr. Stefanos Zafeiriou in the system setup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria E. Angelopoulou.

Additional information

The research leading to these results has received funding from the European Commission FP7-ICT Cognitive Systems, Interaction and Robotics under the contract #270180 (NOPTILUS).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angelopoulou, M.E., Petrou, M. Evaluating the effect of diffuse light on photometric stereo reconstruction. Machine Vision and Applications 25, 199–210 (2014). https://doi.org/10.1007/s00138-013-0507-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-013-0507-z

Keywords

Navigation