Abstract
We present a method for foreground/background video segmentation (change detection) in real-time that can be used, in applications such as background subtraction or analysis of surveillance cameras. Our approach implements a probabilistic segmentation based on the Quadratic Markov Measure Field models. This framework regularizes the likelihood of each pixel belonging to each one of the classes (background or foreground). We propose a new likelihood that takes into account two cases: the first one is when the background is static and the foreground might be static or moving (Static Background Subtraction), the second one is when the background is unstable and the foreground is moving (Unstable Background Subtraction). Moreover, our likelihood is robust to illumination changes, cast shadows and camouflage situations. We implement a parallel version of our algorithm in CUDA using a NVIDIA Graphics Processing Unit in order to fulfill real-time execution requirements.








Similar content being viewed by others
References
Angulo, C., Marroquin, J.L., Rivera, M.: Bayesian segmentation of range images of polyhedral objects using entropy-controlled quadratic Markov measure field models. Appl. Opt. 47(22), 4106–4115 (2008)
Barnich, O., Van Droogenbroeck, M.: Vibe: a universal background subtraction algorithm for video sequences. IEEE Trans. Image Process. 20(6), 1709–1724 (2011)
Benedek, C., Sziranyi, T.: Bayesian foreground and shadow detection in uncertain frame rate surveillance videos. IEEE Trans. Image Process. 17(4), 608–621 (2008)
Birchfield, S.: Klt: an implementation of the Kanade–Lucas–Tomasi feature tracker. http://www.ces.clemson.edu/stb/klt/. Accessed 12 July 2013
Calderara, S., Prati, A., Cucchiara, R.: Hecol: Homography and epipolar-based consistent labeling for outdoor park surveillance. Comput. Vis. Image Underst. 111(1), 21–42 (2008)
Carr, P.: GPU accelerated multimodal background subtraction. In: Proceedings of DICTA, pp. 279–286. IEEE Computer Society, Silver Spring (2008)
Corporation, M.: Microsoft research. http://research.microsoft.com/vision/cambridge/i2i/DSWeb.htm. Accessed 21 Jan 2010
Droogenbroeck, M.V., Paquot, O.: Background subtraction: experiments and improvements for ViBe. In: CVPR Workshops, pp. 32–37. IEEE, New York (2012)
Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.: Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proc. IEEE 90(7), 1151–1163 (2002)
Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background subtraction. In: Frame-Rate Workshop, pp. 751–767. IEEE, New York (2000)
Evangelio, R.H., Sikora T.: Complementary background models for the detection of static and moving objects in crowded environments. In: AVSS, 2011 8th IEEE International Conference on, pp. 71–76. IEEE Computer Society, Silver Spring (2011)
Evangelio, R.H., Sikora, T.: Static object detection based on a dual background model and a finite-state machine. EURASIP J. Image Video Process. 2011, (2011). doi:10.1155/2011/858502. http://dblp.uni-trier.de/db/journals/ejivp/ejivp2011.html#EvangelioS11
Farcas, D., Marghes, C., Bouwmans, T.: Background subtraction via incremental maximum margin criterion: a discriminative subspace approach. Mach. Vis. Appl. 23(6), 1083–1101 (2012)
Fukui, S., Iwahori, Y., Woodham, R.J.: GPU based extraction of moving objects without shadows under intensity changes. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 4165–4172. (2008)
Fung, G.F., Yung, N.H., Pang, G.K., Lai, A.H.: Effective moving cast shadow detection for monocular color traffic image sequences. Opt. Eng. 41(6), 1425–1440 (2002)
Gong, M., Cheng, L.: Real-time foreground segmentation on GPUs using local online learning and global graph cut optimization. In: Proceedings of ICPR’08, pp. 1–4. (2008)
Goyette, N., Jodoin, P., Porikli, F., Konrad, J., Ishwar, P.: 1st IEEE change detection workshop. http://www.changedetection.net. Accessed 10 Dec 2012
Goyette, N., Jodoin, P., Porikli, F., Konrad, J., Ishwar, P.: Changedetection.net: a new change detection benchmark dataset. In: 2012 IEEE Computer Society Conference on CVPR Workshops, pp. 1–8. (2012)
Griesser, A., Roeck, S.D., Neubeck, A., Gool, L.V.: GPU-based foreground–background segmentation using an extended colinearity criterion. In: Greiner, G., Hornegger, J., Niemann, H., Stamminger, M. (eds.) Proceedings of Vision, Modeling, and Visualization (VMV) 2005, pp. 319–326. IOS Press, New York (2005)
Hernandez-Lopez, F.J.: Change detection by probabilistic segmentation from monocular view. http://www.cimat.mx/fcoj23/vidseg/exps.html. Accessed 12 July 2013
Hernandez-Lopez, F.J., Rivera, M.: Binary segmentation of video sequences in real time. In: Ninth Mexican International Conference on Artificial Intelligence, pp. 163–168. IEEE, New York (2010)
Hoberock, J.: Programming Massively Parallel Processors with Cuda. http://code.google.com/p/stanford-cs193g-sp2010/wiki/ClassSchedule. Accessed 18 Aug 2010
Hofmann, M., Tiefenbacher, P., Rigoll, G.: Background segmentation with feedback: the pixel-based adaptive segmenter. In: CVPR Workshops, pp. 38–43. IEEE, New York (2012)
Hörster, E., Lienhart, R.: Call for algorithm competition in foreground/background segmentation. http://mmc36.informatik.uni-augsburg.de/VSSN06_OSAC/. Accessed 12 Dec 2011
Hwu, W.M.W.: GPU Computing Gems, Jade Edition. Morgan Kaufmann, Los Altos (2012)
Jianguang, L., Hao, Y., Weiming, H., Tieniu, T.: An illumination invariant change detection algorithm. In: Proceedings of ACCV, pp. 23–25. (2002)
Joshi, A.J., Atev, S., Masoud, O., Papanikolopoulos, N.: Moving shadow detection with low- and mid-level reasoning. In: Proceedings of ICRA’07, pp. 4827–4832. (2007)
Kolmogorov, V., Criminisi, A., Blake, A., Cross, G., Rother, C.: Bilayer segmentation of binocular stereo video. In: Proceedings of CVPR, pp. 1186–1193. (2005)
Kolmogorov, V., Criminisi, A., Blake, A., Cross, G., Rother, C.: Probabilistic fusion of stereo with color and contrast for bi-layer segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1480–1492 (2006)
Krumm, J.: Test Images for Wallflower Paper. http://research.microsoft.com/en-us/um/people/jckrumm/WallFlower/TestImages.htm. Accessed 23 Nov 2011
Lee, S., Yun, I.D., Lee, S.U.: Robust bilayer video segmentation by adaptive propagation of global shape and local appearance. J. Vis. Commun. Image Represent. 21(7), 665–676 (2010)
Liu, H., Li, J., Liu, Q., Qian, Y.: Shadow elimination in traffic video segmentation. In: Proceedings of MVA, pp. 445–448. (2007)
Maddalena, L., Petrosino, A.: A self-organizing approach to background subtraction for visual surveillance applications. IEEE Trans. Image Process. 17(7), 1168–1177 (2008)
Maddalena, L., Petrosino, A.: The sobs algorithm: what are the limits? In: CVPR Workshops, pp. 21–26. IEEE, New York (2012)
Monteiro, G., Ribeiro, Marcos J.: Roboust segmentation process to detect incidents on highways. ICIAR LNCS 5112, 110–121 (2008)
Nonaka, Y., Shimada, A., Nagahara, H., Taniguchi, R.I.: Evaluation report of integrated background modeling based on spatio-temporal features. In: CVPR Workshops, pp. 9–14. IEEE, New York (2012)
NVIDIA: Cuda Zone. http://www.nvidia.com/object/cuda_get.html. Accessed 12 July 2013
NVIDIA: Nvidia Performance Primitives. https://developer.nvidia.com/npp. Accessed 12 July 2013
Pan, X., Wu, Y.J.: GSM-MRF based classification approach for real-time moving object detection. J. Zhejiang Univ. SCIENCE A 9(2), 250–255 (2008)
Rivera, M., Cedeño, O.D.: Variational viewpoint of the quadratic markov measure field models: theory and algorithms. IEEE Trans. Image Process. 21(3), 1246–1257 (2012)
Rivera, M., Mayorga, P.P.: Quadratic Markovian probability fields for image binary segmentation. In: Proceedings of ICV. (2007)
Rivera, M., Ocegeda, O., Marroquin, J.L.: Entropy-controlled quadratic Markov measure field models for efficient image segmentation. IEEE Trans. Image Process. 16(12), 3047–3057 (2007)
Rother, C., Kolmogorov, V., Blake, A.: “Grabcut”: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23(3), 309–314 (2004)
Salvador, E., Cavallaro, A., Ebrahimi, T.: Shadow identification and classification using invariant color models. In: Proceedings of ICASSP, pp. 1545–1548. IEEE Computer Society, Silver Spring (2001)
Schick, A., Bäuml, M., Stiefelhagen, R.: Improving foreground segmentations with probabilistic superpixel markov random fields. In: CVPR Workshops, pp. 27–31. (2012)
Sheikh, Y., Shah, M.: Bayesian modeling of dynamic scenes for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 27(11), 1778–1792 (2005)
Spagnolo, P., Orazio, T., Leo, M., Distante, A.: Moving object segmentation by background subtraction and temporal analysis. Image Vis. Comput. 24(5), 411–423 (2006)
Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 246–252. (1999)
Stauffer, C., Grimson, W.E.L.: Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 22, 747–757 (2000)
Sun, J., Zhang, W., Tang, X., yeung Shum H, : Background cut. In: Proceedings of ECCV, pp. 628–641. (2006)
Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.: A comparative study of energy minimization methods for markov random fields with smoothness-based priors. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1068–1080 (2008)
Tang, Z., Miao, Z., Wan, Y., Jesse, F.F.: Foreground prediction for bilayer segmentation of videos. Pattern Recognit. Lett. 32(14), 1720–1734 (2011)
Tekalp, A.M.: Video segmentation. In: Bovik, A. (ed.) Handbook of Image and Video Processing, 2nd edn., chap. 4.10. Academic Press, London (2005)
Toyama, K., Krumm, J., Brumitt, B.: Wallflower principles and practice of background maintenance. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 1, pp. 255–261. (1999)
Tsaig, Y., Averbuch, A.: A region-based MRF model for unsupervised segmentation of moving objects in image sequences. In: CVPR, issue no. 1, pp. 889–896. IEEE Computer Society, Silver Spring (2001)
Vigueras, J.F., Rivera, M.: Registration and interactive planar segmentation for stereo images of polyhedral scenes. Pattern Recognit. 2(43), 494–505 (2010)
Wang, H., Suter, D.: A consensus-based method for tracking: modelling background scenario and foreground appearance. Pattern Recognit. 40(3), 1091–1105 (2007)
Yin, P., Criminisi, A., Winn, J., Essa, I.: Bilayer segmentation of webcam videos using tree-based classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 30–42 (2011)
Zivkovic, Z., van der Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn. Lett. 27(7), 773–780 (2006)
Acknowledgments
This work was supported in part by the CONACyT, Mexico [DSc. Scholarship to F.H. and research grant 131369 to M.R.].
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hernandez-Lopez, F.J., Rivera, M. Change detection by probabilistic segmentation from monocular view. Machine Vision and Applications 25, 1175–1195 (2014). https://doi.org/10.1007/s00138-013-0564-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00138-013-0564-3