Abstract
Smart surveillance systems are increasingly being used to detect potentially dangerous situations. To do so, the common and easier way is to model normal human behaviors and consider as abnormal any new strange behavior in the scene. In this article, Dominant Sets is adapted to model most frequent behaviors and to detect any unknown event to trigger an alarm. It is proved that after an unsupervised training, Dominant Sets can robustly detect abnormal behaviors. The method is tested in several different cases and compared to other usual clusterization methods such as KNN, mixture of Gaussians or Fuzzy \(K\)-Means to confirm its robustness and performance. The overall performance of abnormal behavior detection based on Dominant Sets is better, being the error ratio at least \(1.5\) points lower than the others.















Similar content being viewed by others
References
Adam, A., Rivlin, E., Shimshoni, I., Reinitz, D.: Robust real-time unusual event detection using multiple fixed-location monitors. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 555–560 (2008). doi:10.1109/TPAMI.2007.70825
Albarelli, A., Bulò, S.R., Torsello, A., Pelillo, M.: Matching as a non-cooperative game. ICCV 37, 1319–1326 (2009)
Albarelli, A., Rodolà, E., Cavallarin, A., Torsello, A.: Robust figure extraction on textured background: a game-theoretic approach. In: Proceedings of the 2010 20th International Conference on Pattern Recognition. ICPR ’10, pp. 360–363. IEEE Computer Society, Washington (2010)
Albarelli, A., Rodolà, E., Torsello, A.: Imposing semi-local geometric constraints for accurate correspondences selection in structure from motion: a game-theoretic perspective. Intern. J. Comput. Vision 97(1), 36–53 (2012). doi:10.1007/s11263-011-0432-4
Ali, S., Shah, M.: A Lagrangian particle dynamics approach for crowd flow segmentation and stability analysis. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’07. pp. 1–6 (2007). doi: 10.1109/CVPR.2007.382977
Antic, B., Ommer, B.: Video parsing for abnormality detection. In: IEEE International Conference on Computer Vision (ICCV), pp. 2415–2422 (2011). doi:10.1109/ICCV.2011.6126525
Benezeth, Y., Jodoin, P.M., Saligrama, V., Rosenberger, C.: Abnormal events detection based on spatio-temporal co-occurrences. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 2458–2465 (2009). doi:10.1109/CVPR.2009.5206686
Brand, M., Oliver, N., Pentland, A.: Coupled hidden Markov models for complex action recognition. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 994–999 (1997). doi:10.1109/CVPR.1997.609450
Brémond, F., Thonnat, M., Zúiga, M.: Video-understanding framework for automatic behavior recognition. Behav. Res. Methods 38(3), 416–426 (2006)
Cong, Y., Yuan, J., Liu, J.: Sparse reconstruction cost for abnormal event detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3449–3456 (2011). doi:10.1109/CVPR.2011.5995434
Cong, Y., Yuan, J., Liu, J.: Abnormal event detection in crowded scenes using sparse representation. Patt. Recognit. 46(7), 1851–1864 (2013). doi:10.1016/j.patcog.2012.11.021
Connell, J., Senior, A., Hampapur, A., Tian, Y.L., Brown, L., Pankanti, S.: Detection and tracking in the IBM Peoplevision System. In: IEEE International Conference on Multimedia and Expo, 2004. ICME ’04, vol. 2, pp. 1403–1406. (2004). doi:10.1109/ICME.2004.1394495
Dee, H., Hogg, D.: Detecting inexplicable behaviour. In: Proceedings of the British Machine Vision Conference, pp. 50.1–50.10. BMVA Press, London (2004)
Dee, H., Hogg, D.C.: Is it interesting? Comparing human and machine judgements on the pets dataset. Sixth Intern. Workshop Perform. Eval Tracking Surveill 33(1), 49–55 (2004)
Gong, S., Loy, C., Xiang, T.: Security and surveillance. In: Moeslund, T.B., Hilton, A., Krüger, V., Sigal, L. (eds.) Visual Analysis of Humans, pp. 455–472. Springer, London (2011)
Hamid, R., Johnson, A., Batta, S., Bobick, A., Isbell, C., Coleman, G.: Detection and explanation of anomalous activities: Representing activities as bags of event \(n\)-grams. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), Vol. 1, CVPR ’05, pp. 1031–1038. IEEE Computer Society, Washington (2005). doi:10.1109/CVPR.2005.127
Hamid, R., Maddi, S., Johnson, A., Bobick, A., Essa, I., Isbell, C.: A novel sequence representation for unsupervised analysis of human activities. Artif. Intell. 173(14), 1221–1244 (2009). doi:10.1016/j.artint.2009.05.002
Hampapur, A., Brown, L., Connell, J., Pankanti, S., Senior, A., Tian, Y.: Smart surveillance: applications, technologies and implications. In: Joint Conference of the Fourth International Conference on Information, Communications and Signal Processing, and the Fourth Pacific Rim Conference on Multimedia. vol. 2, pp. 1133–1138 (2003). doi:10.1109/ICICS.2003.1292637
Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviors. Syst. Man Cybern. Part C 34(3), 334–352 (2004)
Hu, W., Xiao, X., Fu, Z., Xie, D., Tan, T., Maybank, S.: A system for learning statistical motion patterns. IEEE Trans. Patt. Anal. Mach. Intell. 28(9), 1450–1464 (2006). doi:10.1109/TPAMI.2006.176
Hu, W., Xie, D., Tan, T., Maybank, S.: Learning activity patterns using fuzzy self-organizing neural network. IEEE Trans. Syst. Man Cybern. Part B 34(3), 1618–1626 (2004). doi:10.1109/TSMCB.2004.826829
Hung, H., Kröse, B.: Detecting f-formations as dominant sets. In: Proceedings of the 13th international conference on multimodal interfaces, ICMI ’11, pp. 231–238. ACM, New York (2011). doi:10.1145/2070481.2070525
Jan, T.: Neural network based threat assessment for automated visual surveillance. In: IEEE International Joint Conference on Neural Networks. Proceedings. vol. 2, pp. 1309–1312 (2004). doi:10.1109/IJCNN.2004.1380133
Jiang, F., Yuan, J., Tsaftaris, S.A., Katsaggelos, A.K.: Anomalous video event detection using spatiotemporal context. Comput. Vision Image Underst. 115(3), 323–333 (2011). doi:10.1016/j.cviu.2010.10.008
Johnson, N., Hogg, D.: Learning the distribution of object trajectories for event recognition. Image Vision Comput. 14(8), 609–615 (1996). doi:10.1016/0262-8856(96)01101-8
Kaltsa, V., Briassouli, A., Kompatsiaris, I., Strintzis, M.: Timely, robust crowd event characterization. In: 19th IEEE International Conference on Image Processing (ICIP), pp. 2697–2700 (2012). doi:10.1109/ICIP.2012.6467455
Kim, J., Grauman, K.: Observe locally, infer globally: a space–time mrf for detecting abnormal activities with incremental updates. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 2921–2928 (2009). doi:10.1109/CVPR.2009.5206569
Ko, T.: A survey on behavior analysis in video surveillance for homeland security applications. In: 37th IEEE Applied Imagery Pattern Recognition Workshop, AIPR ’08, pp. 1–8 (2008). doi:10.1109/AIPR.2008.4906450
Li, C.L., Hao, Z.B., Li, J.J.: Abnormal behavior detection using a novel behavior representation. In: 2010 International Conference on Apperceiving Computing and Intelligence Analysis (ICACIA), pp. 331–336 (2010). doi:10.1109/ICACIA.2010.5709913
Li, W., Mahadevan, V., Vasconcelos, N.: Anomaly detection and localization in crowded scenes. IEEE Trans. Patt. Anal. Mach. Intell. 36(1), 18–32 (2014). doi:10.1109/TPAMI.2013.111
Mahadevan, V., Li, W., Bhalodia, V., Vasconcelos, N.: Anomaly detection in crowded scenes. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1975–1981 (2010). doi:10.1109/CVPR.2010.5539872
Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009 pp. 935–942 (2009). doi:10.1109/CVPR.2009.5206641
Nayak, N.M., Sethi, R.J., Song, B., Roy-Chowdhury, A.K.: Modeling and recognition of complex human activities. In: Moeslund, T.B., Hilton, A., Krüger, V., Sigal, L. (eds.) Visual Analysis of Humans, pp. 289–309. Springer, London (2011)
Oliver, N.M., Rosario, B., Pentland, A.P.: A bayesian computer vision system for modeling human interactions. IEEE Trans. Patt. Anal. Mach. Intell. 22(8), 831–843 (2000). ID: 1; additional tuning or training
Pavan, M., Pelillo, M.: Efficient out-of-sample extension of dominant-set clusters. In: NIPS (2004)
Pavan, M., Pelillo, M.: Dominant sets and pairwise clustering. IEEE Trans. Patt. Anal. Mach. Intell. 29(1), 167–172 (2007). doi:10.1109/TPAMI.2007.250608
Pelillo, M.: What is a cluster? Perspectives from game theory. In: NIPS Workshop on Clustering: Science of Art (2009)
Rota Bulò, S., Bomze, I.M.: Infection and immunization: a new class of evolutionary game dynamics. Games Econom. Behav. 71(1), 193–211 (2011). doi:10.1016/j.geb.2010.06.004
Schölkopf, B., Williamson, R.C., Smola, A.J., Shawe-Taylor, J., Platt, J.C.: Support vector method for novelty detection. In: NIPS, pp. 582–588 (1999)
Stauffer, C.: Automatic hierarchical classification using time-based co-occurrences. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. (xxiii+637+663) (1999). doi:10.1109/CVPR.1999.784654
Stauffer, C., Grimson, W.E.L.: Learning patterns of activity using real-time tracking. IEEE Trans. Patt. Anal. Mach. Intell. 22(8), 747–757 (2000)
Torsello, A., Bulò, S.R., Pelillo, M.: Grouping with asymmetric affinities: a game-theoretic perspective. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), pp. 292–299 (2006)
Wang, L., Hu, W., Tan, T.: Recent developments in human motion analysis. Patt. Recogn. 36(3), 585–601 (2003)
Wei, Q., Hu, W., Zhang, X., Luo, G.: Dominant sets-based action recognition using image sequence matching. In: IEEE International Conference on Image Processing, ICIP 2007, vol. 6, pp. 133–136 (2007). doi:10.1109/ICIP.2007.4379539
Xiang, T., Gong, S.: Video behaviour profiling and abnormality detection without manual labelling. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 2, pp. 1238–1245 (2005). doi:10.1109/ICCV.2005.248
Xiang, T., Gong, S.: Video behavior profiling for anomaly detection. IEEE Trans. Patt. Anal. Mach. Intell. 30(5), 893–908 (2008). doi:10.1109/TPAMI.2007.70731
Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Trans. Patt. Anal. Mach. Intell. 13(8), 841–847 (1991). doi:10.1109/34.85677
Yang, X., Latecki, L.J.: Affinity learning on a tensor product graph with applications to shape and image retrieval. In: CVPR, pp. 2369–2376 (2011)
Zhang, Z., Hancock, E.R.: A graph-based approach to feature selection. In: Jiang, X., Ferrer, M., Torsello, A. (eds.) Graph-Based Representations in Pattern Recognition. Lecture Notes in Computer Science, vol. 6658, pp. 205–214. Springer, Berlin, Heidelberg (2011)
Zhao, J., Xu, Y., Yang, X., Yan, Q.: Crowd instability analysis using velocity-field based social force model. In: Visual Communications and Image Processing (VCIP), 2011 IEEE, pp. 1–4 (2011). doi:10.1109/VCIP.2011.6116003
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Alvar, M., Torsello, A., Sanchez-Miralles, A. et al. Abnormal behavior detection using dominant sets. Machine Vision and Applications 25, 1351–1368 (2014). https://doi.org/10.1007/s00138-014-0615-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00138-014-0615-4