Abstract
This paper investigates the recognition of the Eye Accessing Cues used in the Neuro-Linguistic Programming as a method for inferring one’s thinking mechanisms, since the meaning of non-visual gaze directions may be directly related to the internal mental processes. The direction of gaze is identified by separating the components of the eye (i.e., iris, sclera and surrounding skin) followed by retrieving the relative position of the iris within the eye bounding box that was previously extracted from an eye landmarks localizer. The eye cues are retrieved via a logistic classifier from features that describe the typical regions within the eye bounding box. The simultaneous investigation of both eyes, as well as the eye tracking over consecutive frames, are shown to increase the overall performance. The here proposed solution is tested on four databases proving to have superior performance when compared in terms of recognition rate with methods relying on state of the art algorithms.








Similar content being viewed by others
References
Ashraf, A.B., Lucey, S., Cohn, J.F., Chen, T., Ambadar, Z., Prkachin, K., Solomon, P.: The painful face—pain expression recognition using active appearance models. Image Vis Comput. 27(12), 1788–1796 (2009)
Asteriadis, S., Soufleros, D., Karpouzis, K., Kollias, S.: A natural head pose and eye gaze dataset. In: ACM Workshop on Affective Interaction in Natural Environments, pp. 1–4 (2009)
Bandler, R., Grinder, J.: Frogs into princes: neuro linguistic programming. Real People Press, Moab (1979)
Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)
Cadavid, S., Mahoor, M., Messinger, D., Cohn, J.: Automated classification of gaze direction using spectral regression and support vector machine. In: ACII, pp. 1–6 (2009)
Cascia, M.L., Sclaroff, S., Athitsos, V.: Fast, reliable head tracking under varying illumination: An approach based on registration of texture-mapped 3d models. IEEE Trans. Pattern Anal. Mach. Intell. 22(4), 322–336 (2000)
le Cessie, S., van Houwelingen, J.: Ridge estimators in logistic regression. Appl. Stat. 41(1), 191–201 (1992)
Cohn, J.F., De la Torre, F.: Automated Face Analysis for Affective Computing. In: The Oxford Handbook of Affective Computing. Oxford University Press (2014)
Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)
Cristinacce, D., Cootes, T.: Feature detection and tracking with constrained local models. In: BMVC, pp. 929–938 (2006)
Diamantopoulos, G.: Novel eye feature extraction and tracking for non-visual eye-movement applications. Ph.D. thesis, University of Birmingham (2010)
Duchowski, A.: Eye tracking methodology: theory and practice. Springer, New York (2007)
Ekman, P.: Emotion in the human face. Cambridge University Press, Cambridge (1982)
Everingham, M., Zisserman, A.: Regression and classification approaches to eye localization in face images. In: IEEE FG, pp. 441–446 (2006)
Fasel, B., Luettin, J.: Automatic facial expression analysis: a survey. Pattern Recognit. 36(1), 256–275 (1999)
Feng, G.C., Yuen, P.C.: Variance projection function and its application to eye detection for human face recognition. Pattern Recogn. Lett. 19(9), 899–906 (1998)
Florea, C., Florea, L., Vertan, C.: Learning pain from emotion: transferred hot data representation for pain intensity estimation. In: ECCV workshop on ACVR (2014)
Florea, L., Florea, C., Vertan, C., Vranceânu, R.: Zero-crossing based image projections encoding for eye localization. In: EUSIPCO, pp. 150–154 (2012)
Florea, L., Florea, C., Vranceanu, R., Vertan, C.: Can your eyes tell me how you think? A gaze directed estimation of the mental activity. In: BMVC (2013)
Hansen, D., Pece, A.: Eye tracking in the wild. Comput. Vis. Image Underst. 98(1), 182–210 (2005)
Hansen, D., Qiang, J.: In the eye of the beholder: a survey of models for eyes and gaze. IEEE Trans. Pattern Anal. Mach. Intell. 32(3), 478–500 (2010)
Heyman, T., Spruyt, V., Ledda, A.: 3d face tracking and gaze estimation using a monocular camera. In: Proc. of International Conference on Positioning and Context-Awareness, pp. 23–28 (2011)
Kasinśki, A., Florek, A., Schmidt, A.: The PUT face database. Image Process. Commun. 13(3–4), 59–64 (2008)
Laeng, B., Teodorescu, D.S.: Eye scanpaths during visual imagery reenact those of perception of the same visual scene. Cogn. Sci. 26, 207–231 (2002)
McDuff, D., Kaliouby, R.E., Picard, R.: Predicting online media effectiveness based on smile responses gathered over the internet. In: IEEE FG (2013)
Messinger, D.S., Mahoor, M.H., Chow, S.M., Cohn, J.: Automated measurement of facial expression in infant-mother interaction: a pilot study. Infancy 14(3), 285–305 (2009)
Meyer, F.: Topographic distance and watershed lines. Signal Process. 38, 113–125 (1994)
Pentland, A.: Honest signals: how they shape our world. MIT Press, Cambridge (2008)
Pires, B., Hwangbo, M., Devyver, M., Kanade, T.: Visible-spectrum gaze tracking for sports. In: WACV (2013)
Rehg, J., Abowd, G., Rozga, A., et al.: Decoding childrens social behavior. In: IEEE CVPR, pp. 3414–3421 (2013)
Sturt, J., Ali, S., Robertson, W., Metcalfe, D., Grove, A., Bourne, C., Bridle, C.: Neurolinguistic programming: systematic review of the effects on health outcomes. Br. J. Gen. Pract. 62(604), 757–764 (2012)
Tsiamyrtzis, P., Dowdall, J., Shastri, D., Pavlidis, I.T., Frank, M.G., Ekman, P.: Imaging facial physiology for the detection of deceit. Int. J. Comput. Vision 71, 197–214 (2007)
Turkan, M., Pardas, M., Cetin, A.E.: Edge projections for eye localization. Opt. Eng. 47, 047–054 (2008)
Valenti, R., Gevers, T.: Accurate eye center location and tracking using isophote curvature. In: IEEE CVPR, pp. 1–8 (2008)
Valstar M., Martinez, T., Binefa, X., Pantic, M.: Facial point detection using boosted regression and graph models. In: IEEE CVPR, pp. 2729–2736 (2010)
Viola, P., Jones, M.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)
Vranceanu, R., Florea, C., Florea, L., Vertan, C.: NLP EAC recognition by component separation in the eye region. In: CAIP, pp. 225–232 (2013a)
Vranceanu, R., Florea, L., Florea, C.: A computer vision approach for the eye accesing cue model used in neuro-linguistic programming. Sci. Bull. Univ. Politehnica Bucharest Ser. C 75(4), 79–90 (2013b)
Wang, P., Green, M.B., Ji, Q., Wayman, J.: Automatic eye detection and its validation. In: IEEE Workshop on FRGC, CVPR, p. 164 (2005)
Weidenbacher U., Layher, G., Strauss, P., Neumann, H.: A comprehensive head pose and gaze database. In: IET International Conference on Intelligent Environments., pp. 455–458 (2007)
Wolf, L., Freund, Z., Avidan, S.: (2010) An eye for an eye: a single camera gaze-replacement method. In: IEEE CVPR, pp. 817–824 (2010)
Wu, J., Zhou, Z.H.: Efficient face candidates selector for face detection. Pattern Recogn. 36(5), 1175–1186 (2003)
Yoo, D., Chung, M.: A novel non-intrusive eye gaze estimation using cross-ratio under large head motion. Comput. Vis. Image Underst. 98(1), 25–51 (2005)
Zeng, Z., Pantic, M., Roisman, G., Huang, T.: A survey of affect recognition methods: audio, visual, and spontaneous expressions. IEEE Trans. Pattern Anal. Mach. Intell. 31(1), 39–58 (2009)
Zhou, Z.: Projection functions for eye detection. Pattern Recogn. 37(5), 1049–1056 (2003)
Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in the wild. In: IEEE CVPR, pp. 2879–2886 (2012)
Acknowledgments
This work has been co-funded by the Sectoral Operational Program Human Resources Development (SOP HRD) 2007–2013, financed from the European Social Fund and by the Romanian Government under the contract number POSDRU/107/1.5/S/76903, POSDRU/89/ 1.5/S/62557 and POSDRU/159/1.5/S/134398.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Vrânceanu, R., Florea, C., Florea, L. et al. Gaze direction estimation by component separation for recognition of Eye Accessing Cues . Machine Vision and Applications 26, 267–278 (2015). https://doi.org/10.1007/s00138-014-0656-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00138-014-0656-8