Skip to main content
Log in

Anisotropic clustering on surfaces for crack extraction

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Machine vision provides an efficient way for the automatic crack detection of civil structures. However, it is still very challenging to extract the small cracks embedded in noisy background. Even some very recent methods require manual intervention or omission of crack width. In this paper, we aim at extracting such inconspicuous cracks automatically with width information preserved. The basic idea of the proposed method is to assign the pixel points to some arbitrarily shaped clusters, and then sift out the crack clusters according to their elongated shapes. Treating each gray-level image as a parametric surface, we devise an anisotropic clustering algorithm that exploits the geometric properties of the surface. By virtue of the geometric representation and the anisotropy, this algorithm solves the problem of separating adjacent objects while simultaneously grouping the fragments of a crack into the same cluster. Moreover, the globally convex segmentation model is incorporated into our method, serving as a tool that provides appropriate candidate points and important parameters for the clustering procedure. Experimental results on real images demonstrate that the cracks extracted by our method are very similar to manually traced ground truth cracks and thus can be used for measuring the widths of real cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Sinha, S.K., Fieguth, P.W.: Automated detection of cracks in buried concrete pipe images. Autom. Constr. 15, 58–72 (2006)

    Article  Google Scholar 

  2. Sinha, S.K., Fieguth, P.W.: Morphological segmentation and classification of underground pipe images. Mach. Vis. Appl. 17, 21–31 (2006)

    Article  Google Scholar 

  3. Fujita, Y., Hamamoto, Y.: A robust automatic crack detection method from noisy concrete surfaces. Mach. Vis. Appl. 22, 245–254 (2011)

    Article  Google Scholar 

  4. Abdel-Qader, L., Abudayyeh, O., Kelly, M.E.: Analysis of edge-detection techniques for crack identification in bridges. J. Comput. Civ. Eng. 17, 255–263 (2003)

    Article  Google Scholar 

  5. Chambon, S., Subirats, P., Dumoulin, J.: Introduction of a wavelet transform based on 2D matched filter in a markov random field for fine structure extraction: application on road crack detection. In: Image Processing: Machine Vision Applications II, p. 72510A. SPIE (2009)

  6. Li, Q.Q., Zou, Q., Zhang, D.Q., Mao, Q.Z.: Fosa: \(F\)* seed-growing approach for crack-line detection from pavement images. Image Vis. Comput. 29, 861–872 (2011)

    Article  Google Scholar 

  7. Nguyen, T.S., Begot, S., Duculty, F., Avila, M.: Free-form anisotropy: a new method for crack detection on pavement surface images. In: 18th IEEE International Conference on Image Processing (ICIP), pp. 1069–1072 (2011)

  8. Yu, S.N., Jang, J.H., Han, C.S.: Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel. Autom. Constr. 16, 255–261 (2007)

    Article  Google Scholar 

  9. Gunkel, C., Stepper, A., Muller, A.C., Muller, C.H.: Micro crack detection with Dijkstra’s shortest path algorithm. Mach. Vis. Appl. 23, 589–601 (2012)

    Article  Google Scholar 

  10. Kaul, V., Yezzi, A., Tsai, Y.C.: Detecting curves with unknown endpoints and arbitrary topology using minimal paths. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1952–1965 (2012)

    Article  Google Scholar 

  11. Tsai, Y.C., Kaul, V., Yezzi, A.: Automating the crack map detection process for machine operated crack sealer. Autom. Constr. 31, 10–18 (2013)

    Article  Google Scholar 

  12. Zhao, G.T., Wang, T.Q., Ye, J.Y.: Surface shape recognition method for crack detection. J. Electron. Imaging 23, 033013 (2014)

    Article  Google Scholar 

  13. Zou, Q., Cao, Y., Li, Q.Q., Mao, Q.Z., Wang, S.: Crack tree: Automatic crack detection from pavement images. Pattern Recognit. Lett. 33, 227–238 (2012)

    Article  Google Scholar 

  14. Yamaguchi, T., Hashimoto, S.: Fast crack detection method for large-size concrete surface images using percolation-based image processing. Mach. Vis. Appl. 21, 797–809 (2010)

    Article  Google Scholar 

  15. Jahanshahi, M.R., Masri, S.F., Padgett, C.W., Sukhatme, G.S.: An innovative methodology for detection and quantification of cracks through incorporation of depth perception. Mach. Vis. Appl. 24, 227–241 (2013)

    Article  Google Scholar 

  16. Sochen, N., Kimmel, R., Malladi, R.: A general framework for low level vision. IEEE Trans. Image Process. 7, 310–318 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Houhou, N., Thiran, J.P., Bresson, X.: Fast texture segmentation based on semi-local region descriptor and active contour. Numer. Math.-Theory Methods Appl. 2, 445–468 (2009)

    MATH  MathSciNet  Google Scholar 

  18. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66, 1632–1648 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996)

  20. Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16, 645–678 (2005)

    Article  Google Scholar 

  21. Nosovskiy, G.V., Liu, D.Q., Sourina, O.: Automatic clustering and boundary detection algorithm based on adaptive influence function. Pattern Recognit. 41, 2757–2776 (2008)

    Article  MATH  Google Scholar 

  22. Cassisi, C., Ferro, A., Giugno, R., Pigola, G., Pulvirenti, A.: Enhancing density-based clustering: parameter reduction and outlier detection. Inf. Syst. 38, 317–330 (2013)

    Article  Google Scholar 

  23. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. USA 93, 1591–1595 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Spira, A., Kimmel, R.: An efficient solution to the eikonal equation on parametric manifolds. Interfaces and Free Boundaries 6, 315–327 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Weber, O., Devir, Y.S., Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Parallel algorithms for approximation of distance maps on parametric surfaces. ACM Trans. Graph. 27(4), 1–16 (2008)

    Article  Google Scholar 

  26. Cohen, L.D., Kimmel, R.: Global minimum for active contour models: a minimal path approach. Int. J. Comput. Vis. 24, 57–78 (1997)

    Article  Google Scholar 

  27. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)

    Article  MATH  Google Scholar 

  28. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.P., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vis. 28, 151–167 (2007)

    Article  MathSciNet  Google Scholar 

  29. Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split bregman method: segmentation and surface reconstruction. J. Sci. Comput. 45, 272–293 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Adhikari, R.S., Moselhi, O., Bagchi, A.: Image-based retrieval of concrete crack properties for bridge inspection. Autom. Constr. 39, 180–194 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by National Key Technology R&D Program of China (Grant No. 2007BAG06B06) and the Fundamental Research Funds for the Central Universities of China (Grant No. 106112013CDJZR120014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoteng Zhao or Junyong Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, G., Wang, T. & Ye, J. Anisotropic clustering on surfaces for crack extraction. Machine Vision and Applications 26, 675–688 (2015). https://doi.org/10.1007/s00138-015-0682-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-015-0682-1

Keywords