Abstract
Dimensionality reduction has been proven to be a critical data processing step for face recognition. Maximum margin criterion (MMC) is one of the popular supervised dimensionality reduction algorithms. However, the original implementation of MMC is not suitable for incremental learning problem. In this paper, we first propose an eigenvalue decomposition updating algorithm (EVDU) for symmetric matrix. Then, based on our proposed EVDU technique, we propose an incremental MMC (EVDU-IMMC) method which can update the discriminant vectors of MMC when new samples are inserted into the training set. Experiments on ORL and PIE face databases show that the proposed EVDU-IMMC gives the same performance as the batch MMC with much lower computational complexity. The experimental results also show that our proposed EVDU-IMMC gives better performance than other IMMC method in terms of recognition accuracy and computational efficiency.






Similar content being viewed by others
References
Cheng, H., Vu, K., Hua, K.A.: SubSpace projection: a unified framework for a class of partition-based dimension reduction techniques. Inf. Sci. 179, 1234–1248 (2009)
Garcia-Pedrajas, N., Maudes-Raedo, J., Garcia-Osorio, C., Rodriguez-Diez, J.J.: Supervised subspace projections for constructing ensembles of classifiers. Inf. Sci. 193(6), 1–21 (2012)
Tang, H., Maitre, H., Boujemaa, N., Jiang, W.: On the relevance of linear discriminative features. Inf. Sci. 180(18), 3422–3433 (2010)
Yin, H.J., Huang, W.L.: Adaptive nonlinear manifolds and their applications to pattern recognition. Inf. Sci. 180(14), 2649–2662 (2010)
Connolly, J.-F., Granger, E., Sabourin, R.: An adaptive classification system for video-based face recognition. Inf. Sci. 192(6), 50–70 (2012)
Lu, G.-F., Jin, Z., Zou, J.: Face recognition using discriminant sparsity neighborhood preserving embedding. Knowl.-Based Syst. 31(7), 119–127 (2012)
Duda, R.O., Hart, P.E., Stork. D.G.: Pattern Classification, 2nd edn. Wiley, New York (2000)
Howland, P., Wang, J., Park, H.: Solving the small sample size problem in face recognition using generalized discriminant analysis. Pattern Recognit. 39(2), 227–287 (2006)
Belhumeour, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection, IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)
Yu, H., Yang, J.: A direct LDA algorithm for high-dimensional data with application to face recognition. Pattern Recognit. 33(1), 1726–1731 (2000)
Chen, L.F., Liao, H.Y.M., Ko, M.T., Yu, G.J.: A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recognit. 33(10), 1713–1726 (2000)
Lu, G.-F., Wang, Y.: Feature extraction using a fast null space based linear discriminant analysis algorithm. Inf. Sci. 193(6), 72–80 (2012)
Wang, X., Tang, X.: Dual-space linear discriminant analysis for face recognition. In: IEEE Computer Society Conf. on Computer Vision and Pattern Recognition (CVPR’04), Washington, pp. 564–569 (2004)
Ye, J., Janardan, R., Park, C.H., Park, H.: An optimization criterion for generalized discriminant analysis on undersampled problems. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 982–994 (2004)
Li, H., Jiang, T., Zhang, K.: Efficient and robust feature extraction by maximum margin criterion. IEEE Trans. Neural Netw. 17(1), 1157–1165 (2006)
Song, F., Zhang, D., Mei, D., Guo, Z.: A multiple maximum scatter difference discriminant criterion for facial feature extraction. IEEE Trans. Syst. Man Cybern. Part B Cybern. 37(6), 1599–1606 (2007)
Hall, P.M., Marshall, A.D., Martin, R.R.: Merging and splitting eigenspace models. IEEE Trans. Pattern Anal. Mach. Intell. 22(9), 1042–1049 (2000)
Ross, D.A., Lim, J., Lin, R.-S.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. 77(1–3), 125–141 (2008)
Ghashami, M., Phillips, J.M.: Relative errors for deterministic low-rank matrix approximations. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 707–717 (2014)
Ghashami, M., Liberty, E., Phillips, J.M., Woodruff, D.P.: Frequent directions: simple and deterministic matrix sketching 1–28 (2015). arXiv:1501.01711v2
Feldman, D., Schmidt, M., Sohler, C.: Turning big data into tiny data: constant-size coresets for \(k\)-means, PCA and projective clustering. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1434–1453 (2013)
Cohen, M.B., Elder, S., Musco, C., Musco, C., Persu, M.: Dimensionality reduction for \(k\)-means clustering and low rank approximation. 1–37 (2014). arXiv:1410.6801v3
Mao, J., Jain, K.: Artifical neural networks for feature extraction and multivariate data projection. IEEE Trans. Neural Netw. 6(2), 296–317 (1995)
Pang, S., Ozawa, S., Kasabov, N.: Incremental linear discriminant analysis for classification of data streams. IEEE Trans. Syst. Man Cybern. Part B Cybern. 35(5), 905–914 (2005)
Zha, H., Simon, H.D.: On updating problems in latent semantic indexing. SIAM J. Sci. Comput. 21(2), 782–791 (1999)
Zhao, H., Yuen, P.C.: Incremental linear discriminant analysis for face recognition. IEEE Trans. Syst. Man Cybern. Part B Cybern. 38(1), 210–221 (2008)
Kim, T.-K., Wong, S.F., Stenger, B., Kittler, J., Cipolla, R.: Incremental linear discriminant analysis using sufficient spanning set approximations. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR’07), Minneapolis, pp. 1–7 (2007)
Kim, T.-K., Stenger, B., Kittler, J., Cipolla, R.: Incremental linear discriminant analysis using sufficient spanning sets and its applications. Int. J. Comput. Vis. 91(2), 216–232 (2011)
Ye, J., Li, Q., Xiong, H., Park, H.: IDR/QR: an incremental dimension reduction algorithm via QR decomposition. IEEE Trans. Knowl. Data Eng. 17(9), 1208–1222 (2005)
Zheng, W., Tang, X.: Fast algorithm for updating the discriminnat vectors of dual-space LDA. IEEE Trans. Inf. Forensics Secur. 4(3), 418–427 (2009)
Lu, G.-F., Zou, J., Wang, Y.: Incremental complete LDA for face recognition. Pattern Recognit. 45(7), 2510–2521 (2012)
Lu, G.-F., Zou, J., Wang, Y.: Incremental learning of complete linear discriminant analysis for face recognition. Knowl.-Based Syst. 31(7), 19–27 (2012)
Lu, G.-F., Zou, J., Wang, Y.: Incremental learning of discriminant common vectors for feature extraction. Appl. Math. Comput. 218(22), 11269–11278 (2012)
Weng, J., Zhang, Y., Hwang, W.S.: Candid covariance-free incremental principal component analysis. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 1034–1040 (2003)
Yan, J., Zhang, B., Yan, S., Yang, Q., Li, H., Chen, Z., Xi, W., Fan, W., Ma, W.-Y., Cheng, Q.: IMMC: incremental maximum margin criterion. In: Proceedings of Int’l Conf. Knowledge Discovery and Data Mining (KDD’04), pp. 1–6. ACM, Seattle (2004)
Yan, J., Zhang, B., Yan, S., Liu, N., Yang, Q., Cheng, Q., Li, H., Chen, Z., Ma, W.-Y.: A scalable supervised algorithm for dimensionality reduction on streaming data. Inf. Sci. 176(14), 2042–2065 (2006)
Zhao, H., Yuen, P.C., Kwok, J.T.: A novel incremental principal component analysis and its application for face recognition. IEEE Trans. Syst. Man Cybern. Part B Cybern. 36(4), 873–886 (2006)
Zheng, W., Zou, C., Zhao, L.: Weighted maximum margin discriminant analysis with kernels. Neurocomputing 67, 357–362 (2005)
Liu, J., Chen, S.C., Tan, X., Zhang, D.: Comments on “Efficient and robust maximal margin criterion”. IEEE Trans. Neural Netw. 18(6), 1862–1864 (2007)
Lu, G.-F., Lin, Z., Jin, Z.: Face recognition using discriminant locality preserving projections based on maximum margin criterion. Pattern Recognit. 43(10), 3572–3579 (2010)
Acknowledgments
This research is supported by Anhui Provincial Natural Science Foundation (No. 1308085MF95), the Pre-research Foundation of NSFC of Anhui Polytechnic University (zryy1305), the Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information (Nanjing University of Science and Technology), Ministry of Education (Grant No. 30920130122005), China Postdoctoral Science Foundation (2013M531251), NSFC of China (Nos. 61231002, 61073137, 61203243), the Natural Science Foundation of the Anhui Higher Education Institutions of China (No. KJ2013B031) and Jiangxi Provincial Natural Science Foundation of China (20122BAB211025).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lu, GF., Zou, J. Incremental maximum margin criterion based on eigenvalue decomposition updating algorithm. Machine Vision and Applications 26, 807–817 (2015). https://doi.org/10.1007/s00138-015-0691-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00138-015-0691-0