Abstract
In this paper, we present feature descriptor evaluation and feature regression for multimodal image analysis. First, we compare the performances of several popular interest point detectors and feature descriptors from multimodal images with focus on visual and infrared images. The performances of detectors are evaluated mainly by the score of repeatability and accuracy and the descriptors are assessed by using the rate of precision and recall. Secondly, we analyze the relationship between the corresponding descriptors computed from multimodal images. The descriptors are regressed by means of linear regression as well as Gaussian process. Then the features on infrared images are predicted by mapping the descriptors from visual images to the infrared modality through the regression results. Predictions are assessed in two ways: the statistics of absolute error between true values and actual values, and the precision score of matching the predicted descriptors to the original infrared descriptors. We believe that this evaluating information will be useful when selecting an appropriate detector and descriptor for multimodal image analysis. Also the experimental results show that regression methods achieve a well-assessed relationship between corresponding descriptors from multiple modalities.








Similar content being viewed by others
References
Bansal, M., Daniilidis, K.: Joint spectral correspondence for disparate image matching. In: CVPR, pp. 2802–2809 (2013)
Bay, H., Tuytelaars, T., Van Gool, L.: Surf: Speeded up robust features. In: Computer Vision: ECCV 2006, Springer, Graz, pp 404–417 (2006)
Bingham, N.H., Bingham, N., Fry, J.M.: Regression: Linear models in statistics. Springer, New York (2010)
Chang, K.I., Bowyer, K.W., Flynn, P.J.: An evaluation of multimodal 2d+ 3d face biometrics. PAMI 27(4), 619–624 (2005)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, pp 886–893 (2005)
Firmenichy, D., Brown, M., Susstrunk, S.: Multispectral interest points for rgb-nir image registration. In: ICIP, pp 181–184 (2011)
Gauglitz, S., Höllerer, T., Turk, M.: Evaluation of interest point detectors and feature descriptors for visual tracking. Int. J. Comput. Vis. 94(3), 335–360 (2011)
Gil, A., Mozos, Ó.M., Ballesta, M., Reinoso, Ó.: A comparative evaluation of interest point detectors and local descriptors for visual slam. Mach. Vis. Appl. 21(6), 905–920 (2010)
Han, J., Pauwels, E.J., de Zeeuw, P.M.: Visible and infrared image registration in man-made environments employing hybrid visual features. Pattern Recognit. Lett. 34(1), 42–51 (2013)
Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, Manchester, UK, vol 15, p. 50 (1988)
Hrkać, T., Kalafatić, Z., Krapac, J.: Infrared-visual image registration based on corners and hausdorff distance. In: Scandinavian Conference on Image Analysis, pp 383–392 (2007)
Kern, J.P., Pattichis, M.S.: Robust multispectral image registration using mutual-information models. IEEE Trans. Geosci. Remote Sens. 45(5), 1494–1505 (2007)
Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vis. 30(2), 79–116 (1998)
Lowe, D.: Object recognition from local scale-invariant features. In: ICCV, pp 1150–1157 (1999)
Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Lu, C., Jia, J., Tang, C.K.: Range-sample depth feature for action recognition. In: Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, IEEE, pp 772–779 (2014)
Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imaging 16, 187–198 (1997)
Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. Int. J. Comput. Vis. 60(1), 63–86 (2004)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transa. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L.: A comparison of affine region detectors. Int. J. Comput. Vis. 65(1–2), 43–72 (2005)
Moreels, P., Perona, P.: Evaluation of features detectors and descriptors based on 3d objects. Int. J. Comput. Vis. 73(3), 263–284 (2007)
Morris, N.J.W., Avidan, S., Matusik, W., Pfister, H.: Statistics of infrared images. In: CVPR, pp 1–7 (2007)
Ni, B., Wang, G., Moulin, P.: Rgbd-hudaact: A color-depth video database for human daily activity recognition. In: Consumer Depth Cameras for Computer Vision, Springer, New York, pp 193–208 (2013)
Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognit. 29(1), 51–59 (1996)
Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)
Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. Int. J. Comput. Vis. 37(2), 151–172 (2000)
Sedai, S., Bennamoun, M. & Huynh, D.: Evaluating shape and appearance descriptors for 3d human pose estimation. In: Industrial Electronics and Applications (ICIEA), 2011 6th IEEE Conference on, IEEE, pp 293–298 (2011)
Varshney, P.K.: Multisensor data fusion. Electron. Commun. Eng. J. 9(6), 245–253 (1997)
Wang, L., He, D.C.: Texture classification using texture spectrum. Pattern Recognit. 23(8), 905–910 (1990)
Xia, L. & Aggarwal, J.: Spatio-temporal depth cuboid similarity feature for activity recognition using depth camera. In: Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, IEEE, pp 2834–2841 (2013)
Yang, M.Y., Yong, X., Rosenhahn, B.: Feature regression for multimodal image analysis. In: CVPR Workshop on Multi-Sensor Fusion for Outdoor Dynamic Scene Understanding, pp 756–763 (2014)
Zitova, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)
Acknowledgments
The work is partially funded by DFG (German Research Foundation) YA 351/2-1. The authors gratefully acknowledge the support.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yong, X., Yang, M.Y., Cao, Y. et al. Descriptor evaluation and feature regression for multimodal image analysis. Machine Vision and Applications 26, 975–990 (2015). https://doi.org/10.1007/s00138-015-0714-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00138-015-0714-x